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Solution of Differential Equations 

Structure 

1.1. Introduction. 

1.2. Differential Equations. 

1.3. ε -approximate solution. 

1.4. Equicontinuous family of functions. 

1.5. Uniqueness of solutions. 

1.6. Method of successive approximation. 

1.7. Dependence of Solutions on Initial Conditions. 

1.8. Check Your Progress. 

1.9. Summary. 

1.1. Introduction. This chapter contains many important results for obtaining the solutions of given 
differential equations and then the dependence of solutions on initial conditions is discussed.   

1.1.1. Objective. The objective of these contents is to provide some important results to the reader 
like: 

(i) Construction of an approximate solution for a given differential equation. 

(ii) Existence of solution with the help of sequence of approximate solutions. 

(iii) Uniqueness of solution. 

1.1.2. Keywords. ε -approximate solution, Lipschitz condition, Successive approximations. 
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1.2. Differential Equations. 

Suppose f is a complex valued function defined for all real t in an interval I and for complex y in some 
set D. The value of f at (t, y) is denoted by f(t, y). An important problem associated with f is to find a 
complex-valued function φ  on I, which is differentiable there, such that for all t on I, 

(i) ( ), ( )t  t Dφ ∈   ( t ∈ I ) 

(ii) '(t)φ  = f ( )(t , t)φ  

This problem is called finding a solution of an ordinary differential equation of the first order denoted by  

    y'   =  f (t , y)       (1) 

The ordinary refers to the fact that only ordinary derivatives enter into the problem and not partial 
derivatives.  If such a function φ  exists on I satisfying (i) and (ii) there, then φ  is called a solution of (1) 
on the interval I. 

Notation. The set of all complex-valued functions having k continuous derivatives on an open interval I 
is denoted by Ck (I). 

Remark. Clearly if φ  is a solution of (1) satisfying (i) and (ii) then φ ∈ C' (I) because 'φ  is continuous 
on interval I on account of condition (ii).  

1.2.1. Geometrical Interpretation. In geometrical language dy
dx

 = f (t, y) represents a slope of f(t, y) at 

each point of D. A solution φ  on I is a function whose graph has the slope f ( )(t , t)φ  for each t∈I. 

Note. The problem (1) may have many solutions on an interval I and, therefore, we shall be interesting 
in finding a solution passing through a given point in (t, y)-plane. 

1.2.2. Initial value problem. To find a solution of ordinary differential equation dy
dt

 = f (t, y) on an 

open interval J satisfying a given condition φ (t0) = y0 for some t0 ∈ J. 

1.2.3. Leibnitz rule. If a(α ) and b(α ) are continuous and differentiable functions of α , then  

( ) ( ) ( )
( )

( )

( ) ( )( , ) ( , ) ( ), ( ),
b b

a a

d db daf x  dx  f x  dx  f b f a
d d d

α

α

∂ α α
α = α + α α − α α

α ∂α α α∫ ∫ . 

1.2.4. Theorem. A function φ  is a solution of the initial value problem  

dy
dt

 = f (t, y) satisfying y(t0) = y0   (1) 

if and only if it is a solution of the integral equation 

 y = y0 + ( )
0

, ( )
t

t

f s  y s∫ ds.     (2) 
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Proof. Suppose φ  is a solution of the (1) on open interval J. Then 

 'φ  (t) = f ( )(t , t)φ     (3) 

on J. Integrating (3) over [t0, t],  

 φ  (t)−  φ  (t0) = ( )
0

, ( )
t

t

f s  sφ∫ ds 

 ⇒  φ  (t) = y0 + ( )
0

, ( )
t

t

f s  sφ∫ ds. 

We see that φ  is a solution of (2). 

Conversely, Suppose φ  is a solution of the integral (2). Then  

 φ  (t) = y0 + ( )
0

, ( )
t

t

f s  sφ∫ ds      (4) 

Putting t = t0, we get φ  (t0) = y0 which is the initial condition of (1). 

Now, differentiating (4) both sides w.r.t. ‘t’,  

 
( )( )d t

dt
φ  = 0 + d

dt
( )

0

, ( )
t

t

f s  s  ds
 

+ 
  
∫  

 = ( ) ( ) ( )
0

0 0 0, ( ) , ( ) ( ) , ( ) ( )
t

t

 f s  s  ds  f t   t t f t t t
t t t
∂ ∂ ∂ φ + φ − φ ∂ ∂ ∂∫  

 ⇒  'φ (t) = f ( )(t , t)φ . Thus φ  is a solution of (1). 

Remark. 

1. For a given continuous function f(t, y) on a domain D, the first question to be answered is “whether 

there exist a solution of the ordinary differential equation dy
dt

 = f (t, y) for all t ∈J ”. The answer is yes, 

if the interval J is properly prescribed.  

2. An indication of the limitation of any general existence theorem can be seen by considering the 
simple example: 

 
dy
dt

 = y2 

It is clear that a solution of this equation which passes through the point (1,−1) is given by φ (t) = − t-1. 
However this solution does not exist at t = 0, although f(t, y) = y2 is continuous there. This shows that 
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any general existence theorem will necessarily have to be of local nature, and existence in large can only 
be asserted under additional conditions on f(t, y) . 

1.2.5. Local existence. Now our problem is “Does the initial value problem dy
dt

 = f(t, y), y(t0) = y0 have 

a solution y = y(t) defined for t near t0”. For this we shall be constructing a sequence of approximate 
solutions which tend to a solution of given initial value problem. 

1.3. ε -approximate solution. Let f be a real valued continuous function on a domain D in the (t, y) 

plane. An ∈-approximate solution of dy
dt

 = f(t, y), y(t0) = y0 on a t interval J is function φ ∈C on J such 

that 

(i) ( )(t , t) Dφ ∈  for all t ∈ J. 

(ii) φ  ∈ C' (J), except possibly for a finite set S of points on J, where 'φ  may have jump 
discontinuities (means left and right limits exist but are not equal). 

(iii) ( )'(t) f t , (t)φ − φ  < ∈ for all t ∈ J −S. 

Remark.  

1. Any function φ ∈ C satisfying property (ii) on J is said to have a piece wise continuous 
derivative on J and this is denoted by φ  ∈ pC' (J). 

 2.  Let us consider the rectangle R, 

 R = { }0 0( , ) : , , 0 , 0t   y   t t   a    y y   b    a    b  − ≤ − ≤ > > . 

If f ∈ C(R) then f is a continuous function on rectangle R and since R is a closed set so f is bounded 

there. Let, M = max. ( , )f t   y  on R for all (t, y) ∈ R and let α  = min. ba , 
M

 
 
 

. 

Then, α ≤  a and α  ≤  b
M

.  

1.3.1. Cauchy-Euler Construction of an ε -approximate solution.. Let f ∈ C on the rectangle R. 
Given any ∈ > 0, there exists an ∈-approximate solution φ  of ordinary differential equation 

dy
dt

 = f(t, y)       (1)  

on an interval I ={ }0t : t t   − ≤ α  such that φ (t0) = y0. 

(Note that hereα  = min. ba , 
M

 
 
 

 and M = max f(t , y)  on R.) 
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Proof. Let ∈ > 0 be given. We shall construct an ∈-approximate solution for the interval [t0, t0 + α ]. A 
similar construction will define it for the interval [t0− α , t0]. This approximate solution will consist of a 
polygonal path starting at (t0, y0), that is, a finite number of straight line segments joined end to end.  

Since f ∈ C on R, it is uniformly continuous on R [Because a continuous function on a closed domain is 
uniformly continuous on that domain]. Hence, there exist a real number ∈δ > 0 (for a given ∈ > 0) such 
that  

   ( )f(t , y) f t  , y   − ≤ ∈     (2) 

provided that   t t   ∈− ≤ δ  and y y   ∈− ≤ δ    (3) 

Now divide the interval [t0, t0 + α ] into a parts t = t0 < t1 < t2 < …..< tn = t0 + α  in such a way that  

   max k k-1t t   − ≤ min.  , 
M
∈

∈
δ δ 

 
  (4) 

Starting from the point C(t0, y0) we construct the straight line segment with slope f(t0, y0) proceeding to 
the right of t0 until it intersects with the line t = t1 at some point (t1, y1) where y1 = y(t1) and let this point 
be P1.  

 

 

 

 

 

 

 

 

 

This line segment CP1 must lie inside the triangular region bounded by the lines C Q1, C Q2 and the 

third line Q1Q2. Here, slope of CQ1 = 0 0

0 0

y b y b b =   = Mbt + t
M

+ −
α − α

. 

Note that α  is taken to be b
M

 in figure. Similarly, slope of CQ2 = −M.  

Now, at the point (t1, y1), we construct to the right of t1, a straight line segment with slope f((t1, y1) till 
the intersection with t = t2, say at (t2, y2). Continuing in this fashion, in a finite number of steps the 

t0 - a 
(t0 , y0) 

c 
P1 

 y0+b 

 y0−b 

T 

Q1 

Q2 

t0 + 
α t0 + a 

(t0+α, 
y0+b) 

(t0+α, y0-
b) 

t1  t2   
t3 
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resultant path φ  will meet the line t0 +α . Further the path will lie completely within the triangular 
region. This φ  is the required ∈-approximate solution. Analytically, it may be expressed as φ (t0) = y0 

 φ (t) = φ (tk-1) + f(tk-1, φ (tk-1)) (t− tk-1)     (5) 

for tk-1 < t ≤  tk and k = 1, 2,…,n. Note that (5) is equation of straight line passing through the point 
( ), ( )k-1 k-1t tφ  and slope f ( ), ( )k-1 k-1t tφ . From the construction of φ , it is clear that φ ∈ pC'  on [t0, t0 + α ] as 

its derivative may not be continuous at finite number of joins of end points of line-segments. Also for t, 
t  ∈ [t0, t0 + α ], we have  

 ( )( , ( ) ( )k-1 k-1(t) t )  = f t t t t   M t tφ −φ φ − ≤ −   (6) 

using (5). If t is such that tk-1 < t < tk, then (6) together with (4) gives 

 ( )k-1 k-1(t) t   M t t   M.  = 
M
∈

∈
δ

φ −φ ≤ − ≤ δ   

But from (2) and (5), we get  

  ( ) ( ) ( )-1 -1'( ) , ( ) , ( ) , ( )k kt f t   t   f t   t f t   t   φ − φ = φ − φ ≤ ∈  

Here we can apply (2) because k-1t t ∈− ≤ δ  (By (4)) and ( )k-1(t) t   ∈φ −φ ≤ δ  as proved above. 

This shows that φ  is an ∈-approximate solution as required. 

Note. After finding an ∈-approximate solution, we shall prove in further studies that there exist a 
sequence of these approximate solutions which tend to a solution. 

1.4. Equicontinuous family of functions. A family of functions F = {f} defined on a real interval J is 
said to be equicontinuous on J, if given ∈ > 0, there exist a ∈δ  > 0, independent of f ∈ F and also t, t  ∈ 
J such that  

 ( ) ( )f t f t   − < ∈ whenever t t  < ∈− δ .  

1.4.1. Ascoli lemma. On a bounded interval J, let F = {f} be an infinite family of uniformly bounded 
and equicontinuous set of functions. Then F contains a sequence {fn}, n = 1, 2,… which is uniformly 
convergent on J. 

Proof. Let {rk}, k = 1, 2, 3,… be the rational numbers in J enumerated in some order. The set of 
numbers { }) ,1f(r   f  F∈ , is bounded, and hence there exist a sequence of distinct functions {fn1}, 

fn1∈F, such that the sequence { }( )n1 1f r  is convergent. Similarly the set of numbers { }( )n1 2f r  has a 

convergent subsequence { }( )n2 2f r . 
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Continuing in this way, an infinite set of functions fnk ∈ F, where n, k = 1, 2,… is obtained which have 
the property that { }nkf  converges at r1, r2,…, rk. Define fn to be the function fnn. Then < fn > is the 

required sequence which is uniformly convergent on J. 

Clearly < fn > converges at each of the rationals on J. that is, < fn (rk) > is convergent for every rational rk 
on J. We know that every convergent sequence is a Cauchy sequence, hence for every ∈ > 0, and rk ∈ J, 
there exist an integer N∈ (rk) such that  

  ( ) ( )n k m kf r f r−  < ∈ for all n, m > N∈ (rk).   (1)  

Now the set F = {f} is an equicontinuous set, so for given ∈ > 0, there exist a ∈δ , independent of t and t  
and f ∈ F such that  

  f(t) f( t )−  < ∈ whenever t t   ∈− ≤ δ   (2) 

Now, divide the interval J into a finite number of subintervals J1, J2, ..., Jp such that the length of the 
largest subinterval is less than ∈δ . For each Jk choose a rational number kr  ∈ Jk. Hence  

 ( ) ( )n mf t f t− ( ) ( ) ( ) ( ) ( ) ( )k k k kn n n m m m  f t f r f r f r f r f t≤ − + − + −      

 ( ) ( ) ( ) ( ) ( ) ( )k k k kn n n m m m f t f r f r f r f r f t≤ − + − + −  

   < ∈ + ∈ + ∈ = 3∈  [Using (1) and (2)] 

provided that n, m > max. { }( ) ( )1 kN r  ,...,N r∈ ∈ . This proves the uniform convergence of the sequence {fn} 

on J in view of Cauchy criteria for uniform convergence.  

1.4.2. Cauchy-peano existence theorem. If f∈ C on the rectangle R, then thee exist a solution φ  ∈ C'  

of the differential equation dy
dt

 = f (t, y) on the interval 0t t   − ≤ α  for which φ (t0) = y0 where α  = min. 

ba , 
M

 
 
 

 and M = max ( , )f t   y , (t, y) ∈ R. 

Proof. Let {∈n}, n = 1, 2,… be a montonically decreasing sequence of positive real numbers tending to 
zero as n→∞ . By the theorem of ∈- approximate solutions, for each ∈n there exist an ∈n-approximate 

solution, say, φ n, of the differential equation dy
dt

 = f (t, y) on the interval 0t t   − ≤ α  such that φ n (t0) = 

y0 Here, we know that R = {(t, y). 0t t   a− ≤ , 0y y   b− ≤ , a > 0, b > 0} and M = max f(t , y)  for (t, y) 

∈ R and α  = min. ba , 
M

 
 
 

  

Now, by the theorem of ∈-approximate solution, we know that  
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  n n(t) ( t )   φ −φ ≤ M t t−  for t, t ∈[t0, t0 + α ]  (1) 

Applying (1) to t  = t0 and since we know that 0t t   − ≤ α  = b
M

, it follows that n n 0(t) (t )φ −φ ≤  b  

 ⇒  n 0(t) y   bφ − ≤          

Now,  n n 0 0 n 0 0 0(t)  = (t) y y   (t) y y  b + yφ φ − + ≤ φ − + ≤ . 

This shows that the sequence { }(n t)φ  is uniformly bounded by b + 0y . Moreover, (1) implies that the 

sequence { nφ } is an equicontinuous set. Therefore by the Ascoli lemma, there exist a subsequence 

{ }nkφ , k = 1, 2,…, of { nφ }, converging uniformly on [ ],0 0t t−α +α  to a limit function φ  which must be 

continuous since each nkφ  is continuous. Now we shall show that this limit function φ  is a solution of 
given ordinary differential equation which gives the required specifications. To show this, we write the 
relation defining nφ  as an ∈n- approximate solution in the integral form, as follows 

  nφ (t) = y0 + ( )
0

, ( ) ( )
t

n n
t

f s  s s φ + ∆ ∫ ds  (2) 

where ( )( ) ( ) , ( )n n ns   s f s  s′∆ = φ − φ  at those points where 'nφ  exists and ( )n s∆  = 0 otherwise . Because 

'nφ  is an ∈n -approximate solution therefore  

  ( )n ns   ∆ ≤ ∈       (3) 

Since f is uniformly continuous on R and nkφ → φ  uniformly on the interval [ ],0 0t t−α +α  as k→∞ , it 

follows that f ( ) ( ), ( ) , ( )nkt t f t tφ → φ  uniformly on [ ],0 0t t−α +α  as k→∞ . 

Replacing n by nk in (2), letting k→∞  and using (3), we obtain  

φ (t) = y0 + ( )
0

, ( )
t

t

f s  sφ∫ ds      (4) 

From this (4), on putting t = t0, we get φ (t0) = y0 + 0 = y0 and on differentiating (4), we get 'φ (t) = 

f ( ), ( )t  tφ . It is clear from this that φ (t) is a solution of given ordinary differential equation on 

0t t   − ≤ α  and is of class C' . 

Remarks.  

1. In general, the choice of a subsequence of { nφ } in the above proof is necessary because there may 

exist polygonal paths { nφ } which diverge everywhere on a whole interval about t = t0 as ∈n→0.  

2. If uniqueness of solution is assured then the choice of a subsequence in above theorem is unnecessary.  
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Proof. If it is assumed that a solution of differential equation dy
dt

 = f(t, y) through (t0, y0) (if it exists) is 

unique then every sequence of polygonal paths { nφ } for which ∈n→0 must converge on 0t t   − ≤ α , 

and hence uniformly, to a solution because { nφ }is an equicontinuous set on 0t t   − ≤ α . Suppose this 

were false. Then there would exist a sequence of polygonal paths { nφ } divergent at some point on 

0t t   − ≤ α . This implies the existence of at least two subsequences of { nφ } tending to different limit 

functions. Both will be solutions and this gives a contradiction because it is pre-assumed that solution is 
unique. 

3. It can happen that the choice of a subsequence is unnecessary even though uniqueness is not satisfied. 
It can be explained by taking an example. Consider the example  

   31dy  = y
dt

     (1) 

There are an infinite number of solutions starting at (0, 0) which exist on J = [0, 1]. For any c such that 0 
≤  c ≤  1, the function φ c defined by  

  3 2

0 , 0
( ) 2 ( ) , 1

3
c

        t   c
t   

t c     c  t   

≤ ≤
φ =  − < ≤ 
 

 (2) 

is a solution of (1) on [0, 1]. If the construction of theorem of ∈- approximate solutions is applied to (1), 
one find that only polygonal path starting at the point (0, 0) is φ 1. This shows that this method cannot, in 

general, give all solutions of differential equation dy
dt

 = f(t, y). 

1.4.3. Domain. An open connected set in the real (t, y) plane is called a domain. 

1.4.4. Theorem. Let f ∈ C on a domain D in the (t, y) plane, and suppose (t0, y0) is any point in D. Then 

there exists a solution φ (t) of ordinary differential equation dy
dt

 = f(t, y) on some t interval containing t0 

in its interior. 

Proof. Since D is open, there exist an r > 0 such that all points whose distance from (t0, y0) is less than r, 
are contained in D. Let R be any closed rectangle containing (t0, y0) and contained in this open circle of 
radius r. Then applying Cauchy – Peano’s existence theorem on R we get the required result. 

1.5. Uniqueness of solutions. By the example discussed in remark 3., it is clear that something more 
than the continuity of f(t, y) is required in order to guarantee that a solution passing through a given 
point be unique. 

1.5.1. Lipschitz condition. Suppose f is defined in a domain D in the (t, y) plane. If there exist a 
constant K > 0 such that ) )1 2 1 2f(t,y f(t,y K y y− ≤ −  for every pair of points (t, y1) and (t, y2) in D, then 
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the function f is said to satisfy Lipschitz condition w.r.t y in D and constant K is called Lipschitz 
constant. 

The fact that f satisfies Lipschitz condition in the domain D is expressed as f ∈ Lip in D. 

If in addition f ∈ C in D, then we write f ∈ (C, Lip) in D. 

Note. If f ∈ Lip in D then, f is uniformly continuous in y for each fixed t. 

1.5.2. Example. Show that the function f (t, y) = y2 satisfies Lipschitz condition on the rectangle R 
defined by t a≤ , y b≤ . 

Solution. Here,  

) )1 2f (t , y f (t , y−  = 2 2
1 2y y−  = 1 2 1 2y y  y y+ −   (1) 

 

We note that maximum value of 1 2y y+  in the above defined rectangle is 2b. So by (1), we have  

 ) )1 2 1 2f (t , y f (t , y  2b y y− ≤ −  for all (t, y1), (t, y2) ∈ R. 

Thus the given function f(t, y) = 21y  satisfies the Lipschitz condition in the rectangle R with Lipschitz 
constant 2b. 

1.5.3. Theorem. Let f(t, y) be such that f
y
∂
∂

 exists and is bounded for all (t, y) ∈ D, where D is a domain 

or closed domain such that the line segment joining any two points of D lies entirely within D . Then f 
satisfies a Lipschitz condition (w.r.t. y) in d, where the Lipschitx constant is given by  

   K = 
lub

( , )
f (t , y)

t y D y
∂

∈ ∂
. 

Proof. Since f (t , y)
y

∂
∂

 exist and is bounded for all (t, y) ∈ D, there exists a constant K > 0, such that  

   K = 
lub

( , )
f (t , y)

t y D y
∂

∈ ∂
. 

Moreover, by the mean value theorem of differential calculus, for any pair of points (t, y1), (t, y2) in D 
there exists ξ , y1 < ξ  < y2, such that 

 ) )1 1f (t , y f (t , y−  = ( )1 2y y−  f (t , )
y

∂ ξ
∂

 for all (t, ξ ) ∈ D 

Thus, ) )1 2f (t , y f (t , y−  = 1 2y y− f (t , )
y

∂ ξ
∂

 ≤  1 2y y−  lub
(t , y)  D

f (t , y)
y∈

 ∂
 ∂ 

 = K 1 2y y− ,  

This implies 
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 ) )1 2 1 2f (t , y f (t , y  K y y− ≤ − , 

for all (t, y1), (t, y2) in D. This shows that f(t, y) satisfies a Lipschitz condition in D and K is the Lipschitz 
constant. 

Remark. The sufficient condition of the above theorem is not necessary for f(t, y) to satisfy a Lipschitz 
condition in d. That is there exists function f (t, y) such that f satisfy a Lipschitz condition in d but such 
that the hypothesis of theorem is not satisfied.  

(a) Consider the function f defined by f (t, y) = t y , where d is the rectangle defined by  

   D ={ }(t , y) : t a , y  b≤ ≤  

we note that  

) )1 2f (t , y f (t , y−  = 1 2t y t y− ≤  t 1 2y y−  ≤  a 1 2y y−  for all (t, y1) and (t, y2) in D 

Thus f (t, y) satisfies a Lipschaitz condition in D. However, the partial derivative f
y
∂
∂

 does not exists at 

any point (t, 0) ∈ D for which t ≠  0. 

1.5.4. Exercise.  

1. Show that the function (t, y) = 21y  satisfies the Lipschitz condition on any rectangle R: x a≤ , 

b≤ y≤ c (a, b, c > 0). 

2. Show that the function f (t, y) = 21y  does not satisfy the Lipschitz condition in any domain 
which includes the line y = 0. 

3. Using the above theorem, show that following functions satisfy the Lipschitz condition in the 
rectangle R defined by t a≤ , y b≤  

(i) f (t, y) = t2 + y2   (ii)  f (t, y) = t – siny + y cost. 

1.5.5. Theorem. Suppose f ∈ (C, Lip) in D with Lipschitz constant K. Let φ 1 and φ 2 be 1ε - and 2ε - 
approximate solutions of ordinary differential equation  

dy
dt

 = f(t, y)      (1) 

in D, of class pC'  on some interval (a, b), satisfying for some t0, a < t0 < b, 

  2) ( )1 0 0(t t   φ −φ ≤ δ      (2) 

where δ  is a non – negative constant. If ∈ = ∈1 + ∈2 then for all t ∈ (a, b) 

 ( ) ( )( )2) ( ) 10 0K t--t K t--t
1(t t    e e

K
∈

φ −φ ≤ δ + −     (3) 
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Proof. We shall consider the case t0 ≤  t < b and a corresponding proof holds for a < t ≤  t0. Since φ 1 and 
φ 2 are ∈1- and ∈2-approximate solutions of ordinary differential (1), 

 ( )i i' (s) f s , (s)    for  i = 1 , 2iφ − φ ≤ ∈    (4)  

at all points except a finite number of points on the interval t0 ≤  s < b. Integrating from t0 to t (4), we get  

( )) ( ) ( ) ( )
0

t

i i 0 i i 0
t

(t t f s , s ds   t tφ −φ − φ ≤ ∈ −∫ , i = 1, 2 (5) 

Using the fact that   α −β ≤ α + β  and (5), we obtain 

  ( ) ( ){ }2 2) ( ) ) ( )
0

t

1 1 0 0 1 2
t

(t t (t t f s , (s) f s , (s) dsφ −φ − φ −φ − φ − φ∫  

 ≤ ( ) ( ){ }2 2) ( ) ) ( )
0

t

1 1 0 0 1 2
t

(t t (t t f s , (s) f s , (s) dsφ −φ −φ −φ − φ − φ∫  

 = ( ) ( )1 2( ) ) ) ( )
0 0

t t

1 0 1 2 0 2
t t

t (t f s , (s) ds (t t f s , (s) ds
      φ −φ − φ − φ −φ − φ   
      

∫ ∫  

 ≤  ( ) ( )1 2( ) ) ) ( )
0 0

t t

1 0 1 2 0 2
t t

t (t f s , (s) ds (t t f s , (s) dsφ −φ − φ + φ −φ − φ∫ ∫  

 ≤  1 2 2( ) ( ) )( ) ( )0 0 1 0 0t t t t  = ( t t  = t t∈ − +∈ − ∈ +∈ − ∈ −   (6) 

We define a function r(t) on the interval t0 ≤  t < b by the relation  r(t) = 2) ( )1(t tφ −φ . Using this 

definition in (6) we obtain 

  r(t) ≤  r(t0) + ( ) ( )) )
0

t

1 2 0
t

f s , (s) f s , (s ds +  (t tφ − φ ∈ −∫  (7) 

Now by hypothesis in the theorem that is, (2) we have r(t0) ≤  δ . Using this in (7) we obtain, 

r(t) ≤ δ  + ( ) ( )
0

1 2 0, ( ) , ( ) ( )
t

t

f s  s f  s  s ds   t tφ − φ + ∈ −∫  (8)  

Now using the fact that f ∈ Lip in D, we get 

( ) ( )1 2 1 2, ( ) , ( ) ( ) ( )f s  s f s  s   K s  sφ − φ ≤ φ − φ  = K r(s).  

Using this in (8) we obtain 
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r(t) ≤  δ + K 
0

t

t

r(s) ds∫ + ∈ (t – t0)    (9) 

We define a function R(t) = 
0

t

t

r(s) ds∫ , t0 ≤ t < b, then R' (t) = r(t). Using this in (9) we obtain 

  r(t) ≤  δ + K R(t)+ ∈ (t – t0)      (10) 

 and R' (t) – K R(t) ≤  δ  + ∈(t – t0)     (11) 

Multiplying both sides of above inequality (11) by )0--K(t--te  and then integrating the resulting expression 
over the interval [t0, t], we get  

 )0--K(t--te  R(t) ≤  [ ]) ) )0 0--K(t--t --K(t--t
02 2 1 e  e 1+K(t --t  

K K K
δ ∈ ∈ − − +     

  R(t) ≤  [ ]) )1 )0 0K(t--t K(t--t
02 2 e  1+K(t --t  e

K K K
δ ∈ ∈ − − +   

Using this in (10), we obtain  

 r(t) ≤  ( )( ) [ ] )1 ) ( )0 0K t--t K(t--t
0 0e 1+K(t --t  + e t--t

K K
∈ ∈

δ+ δ − − +∈  = ( ) ) 10 0K t--t K(t--te  + e
K
∈  δ −   

  ⇒  ( ) ( )( )2) ( ) 10 0K t--t K t--t
1(t t    e e

K
∈

φ −φ ≤ δ + −  

which is the required result on the interval [t0, b] . 

1.5.6. Theorem. Let f ∈ (C, Lip) in D and (t0, y0) ∈ D. If φ 1 and φ 2 are any two solutions of the initial 

value problem dy
dt

 = f(t, y) in D, y(t0) = y0 on t ∈ (a, b) such that φ 1(t0) = φ 2(t0) = y0. Then φ 1 = φ 2 that 

is, solution of initial value problem is unique. 

Proof. Since φ 1 and φ 2 are solutions, so ∈1 = 0, ∈2 = 0 ⇒  ∈ = 0 + 0 = 0. 

Also δ  = 0 because 1 1( ) ( )0 0 0 0t t  = y yφ −φ −  = 0. Hence by above theorem, we must have  

   1 2( ) ( )t tφ −φ  = 0 for all t ∈ (a, b)  

  ⇒  1 2( ) ( )t   tφ = φ  for all t ∈ (a, b) ⇒  φ 1 = φ 2 

Note. An another existence proof of our initial value problem depending upon the inequality derived in a 
previous theorem is as follows. 
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1.5.7. Theorem. Suppose f ∈ (C, Lip) on the rectangle R. 0t t−  ≤  a, 0y y−  ≤  b and a > 0, b > 0. Let 

M = max. { }( )f t , y  : (t , y)  R∈  and α  = min ba , 
m

 
 
 

.Then there exist a unique solution φ  ∈ C'  of 

the initial value problem 

 dy
dt

 = f(t, y)     (1)  

in R, on 0t t−  ≤  α  for which y(t0) = y0. 

Proof. Let {∈n} be a monotone decreasing sequence of positive real numbers tending to zero, that is, 
∈n→0 as n→ ∞ . For each ∈n the differential (1) has an ∈n-approximate solution, φ n. We know that 
these functions satisfy the relation 

φ n(t) = y0 + [ ]( ) ( )
0

t

n n
t

f(s , s sφ + ∆∫ ds   (2) 

where  ( )( ( ( )'
n n ns)  =  s) -- f s , s∆ φ φ    (3) 

at those points where '
nφ  exists and (n s) = 0∆  otherwise. Now by definition of ∈n, we have n∆ (t) →0 

as n→ ∞ , uniformly on 0t t−  ≤  α . Applying inequality of last theorem to the functions φ n and φ m, we 

obtain 

)( 1)( ) ( )
K

n m
n m

( et t   
K

α∈ +∈ −
φ −φ ≤

 

where K is the Lipschitz constant and this inequality holds for 0t t−  ≤ α . 

By the above inequality, the sequence {φ n} is uniformly convergent on 0t t−  ≤  α , and therefore there 

exists a continuous limit function φ  on this interval such that φ n(t) → φ (t) as n→ ∞  uniformly on 

0t t−  ≤  α .  

This fact, plus the uniform continuity of f on R, implies that  

 ( ) ( )( (nf t , t) f t , t)φ → φ     (4) 

as n→ ∞  uniformly on the interval 0t t−  ≤  α . Hence, we get  

( ) ( )( ) ( ) ( )
0 0

t t

n nn
t t

lim  f s, s  + s  ds  = f s, s  ds
→∞

 φ ∆ φ ∫ ∫   

Letting n→ ∞  in (2) and using (4), we obtain 
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 φ (t) = y0 + ( )( )
0

t

t

 f s, s  dsφ∫  

which proves the existence of a solution φ  ∈ C'  of the initial value problem on 0t t−  ≤  α . Also the 

solution is unique by above theorem because we are given that f ∈ (C, Lip). 

Remark. Clearly, in above theorem 
)( 1)( ) ( )

0K(t--t
n

n
et t   

K
∈ −

φ −φ ≤ . This inequality provides a bound 

for the error in using ∈n-approximate solutions in place of the actual solution. The inequality is valid 
only when a function f is satisfying the Lipschitz condition. 

1.6. Method of successive approximation. Now we shall consider a very useful method for finding a 
unique exact solution. This method is known as the method of successive approximation. 

1.6.1. Picard-Lindelof Theorem. 

If f ∈ (C, Lip) on rectangle R defined by R = { }( 0 0t , y) : t t   a , y--y   b− ≤ ≤  where a > 0, b > 0 and 

(t0, y0) is some point in the (t, y) plane. Prove that there are successive approximations φ k, k = 0, 1, 2,…, 

on the interval 0t t− ≤ α  as continuous functions and they converge on this interval to the unique 

solution φ  of the initial value problem  

  dy
dt

 = f(t, y) in R, y(t0) = y0   (1) 

with some suitable real number α . 

Proof. Since f ∈ C on the rectangle R so f is bounded. Let M = max. { }f (t , y)  : (t , y)  R∈  

and α  = min. ba , 
m

 
 
 

. 

Integrating (1) we find an equivalent integral equation  

  y(t) = y0 + ( )( )
0

t

t

 f s, y s  ds∫    (2) 

Thus a solution of problem (1) must satisfy (2) and conversely. Now we define a sequence {φ k} of 
successive approximations of the problem (1) by the recurrence formula φ 0(t) = y0 

  φ 1(t) = y0 + ( )0 ( )
0

t

t

 f s, s  dsφ∫  

  φ 2(t) = y0 + ( )1( )
0

t

t

 f s, s  dsφ∫     (3) 
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  φ k(t) = y0 + ( )( )
0

t

k 1
t

 f s, s  ds−φ∫    

where k = 0, 1, 2, …, on 0t t− ≤ α . 

We shall be considering the interval [t0, t0 + α ] and similar argument holds for the interval [t0− α , t0]. 

Now, we prove that every  

φ k ∈ C'  and (k 0t)--yφ  ≤  M (t− t0)    (4) 

For t ∈ [t0, t0 + α ], we shall prove it by the mathematical induction. 

Obviously φ 0 satisfy these conditions. Now we assume that φ k does the same and we shall prove the 

requirements for φ k+1. By assumption, ( )(kf t , t)φ  is defined and continuous on the interval [t0, t0 + α ]. 

Hence by recurrence formula (3) the function φ k+1 exists on [t0, t0 + α ]  

and  (k+1 0t)--yφ  = ( )( )
0

t

k
t

 f s, s  dsφ∫  ≤  ( )( )
0

t

k
t

 f s, s dsφ∫  ≤  M (t− t0) 

Therefore φ k+1 satisfy all the necessary requirements. Also φ k ∈ C'  clearly. Now we shall prove that 
the sequence {φ n} is convergent. For this, we define  

  k∆ (t) = ( (k+1 kt)-- t)φ φ  for [t0, t0 + α ]     (5) 

Now from (5) and (3), we have  

 k∆ (t) = ( ) ( )( ) ( )
0

t

k k-1
t

 f s, s f s, s  ds φ − φ ∫   

 ≤  ( ) ( )( ) ( )
0

t

k k-1
t

 f s, s f s, s  dsφ − φ∫  ≤  K ( ) ( )
0

t

k k-1
t

 s s  dsφ −φ∫   

   = K ( )
0

t

k-1
t

 s  ds∆∫       (6) 

where K is the Lip – constant. From (4), we get  

  0∆ (t) = ( ( ( 1  0  1 0t)-- t)  = t)--yφ φ φ  ≤  M (t− t0)  (7) 

By applying induction on (6), making use of (7), we get 

  k∆ (t) ≤  ( )k+1 k+1
0M K t t 

K k+1!
−   

for k = 1, 2, 3, …, and t ∈ [t0, t0 + α ]. 



Ordinary Differential Equations 17 

 
 

Hence   k∆ (t) ≤  )k+1M ( K 
K k+1!

α      (8) 

for all t ∈ [t0, t0 + α ]. 

Since the power series 
k+1

k = 0

M ( K)   
K k+1!

∞ α∑  is convergent and therefore by Weierstrass – M test, the series 

(k
k = 0

   t)
∞

∆∑  is uniformly and absolutely convergent on the interval [t0, t0 + α ]. Thus the series φ 0(t) + 

( )( ) ( )k+1 k
k = 0

  t t
∞

φ −φ∑  is uniformly convergent on the interval [t0, t0 + α ]. 

Let   Sn = φ 0(t) + { }( ) ( )
n-1

k+1 k
k = 0

  t tφ −φ∑  = φ n(t) 

Thus the sequence {φ n(t)} is absolutely and uniformly convergent on the interval [t0, t0 + α ] to a limit 
function, say φ (t), which is continuous on the interval [t0, t0 + α ]. 

Finally it will be shown that this limit function φ (t) is a solution of desired problem. Since φ (t) is 

continuous so ( )f s , (s)φ  exists for s ∈ [t0, t0 + α ] and  

    
( ) ( ){ }( ) ( )

0

t

k
t

 f s, s f s, s  dsφ − φ∫  ≤  ( ) ( )( ) ( )
0

t

k
t

 f s, s f s, s  dsφ − φ∫  ≤  K ( ) ( )
0

t

k
t

 s s  dsφ −φ∫  (9) 

as it is given that function f satisfy the Lipschitz condition. 

Since φ k→ φ  uniformly on [t0, t0 + α ], we have 

 ( (k 0s)-- s)φ φ  →  0       (10) 

as k→ ∞   uniformly on [t0, t0 + α ] . 

Using (9) and (10), we concluded that 

 ( ) ( )( ) ( )
0 0

t t

k
t t

 f s, s ds f s, s  dsφ → φ∫ ∫       (11) 

uniformly on the interval [t0, t0 + α ] as k→ ∞ . Using (11) in (3) and applying the limit k→ ∞ , we get 

φ (t) = y0 + ( )( )
0

t

t

 f s, s  dsφ∫   

Hence φ (t) is a solution of integral (2) and therefore is a solution of initial value problem (1) on the 
interval [t0, t0 + α ]. Also f satisfies Lipschitz condition and hence φ (t) is unique also.  
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Remarks. (1) The inequality (4) geometrically mean that all the functions φ k start at (t0, y0) and remain 
within  a triangular region, say T, between the lines y−y0 = ±  M (t− t0), t [t0, t0 + α ]. 

(2) An upper bound for the error in approximating the solution φ (t) by the nth – approximation φ n(t) is 
found   to be  

   ( (nt)-- t)φ φ  = { }( ) ( )k+1 k
k = n

  t t
∞

φ −φ∑  ≤  ( ) ( )k+1 k
k = n

  t t
∞

φ −φ∑   

  = ( )
t

n
k = n

  t∆∑  ≤
k = n

  
∞

∑ )k+1M ( K 
K k+1!

α      [Using (8)] 

  = M  
K k = n+1

  
∞

∑ )k( K
k!
α  = )n+1M ( K 

K n+1!
α  

k = 0
  

∞

∑ )k( K
k!
α  ≤  )n+1

KM ( K e  
K n+1!

α α  

1.6.2. Example. Solve the initial value problem dy
dt

 = y, y (0) = 1 by Picard’s method. 

Solution. The integral equation equivalent to the given initial value problem is  

  y (t) = 1 + 
t

0

y(s) ds∫      (1) 

The successive approximations given by Picard’s method are φ 0 (t) = 1 

  φ n+1(t) = 1 + 
t

n
0

(t) dtφ∫
 

    (2) 

for n = 0, 1, 2, 3,…, we calculate, 

  φ 1(t) = 1 + 
t

0
0

(s) dsφ∫  = 1 + 
t

0

1. ds∫  = 1 + t 

  φ 2 (t) = 1 + 
t

1
0

(s) dsφ∫  = 1 + 
t

0

(1 + s) ds∫  = 1 + t + 
2!

2t  

  φ 3 (t) = 1 + 
t

2
0

(s) dsφ∫  = 1 + 
t 2

0

s1 + s +  ds
2!

 
 
 
∫  = 1 + t + 

2!

2t  + 
3!

3t  

Continuing like this, we obtain 

  φ n (t) = 1 + t + 
2!

2t  + …  + 
!

nt
n

 

Taking the limit as n→ ∞ , lim
n→∞

 φ n (t) = et 

Therefore, φ (t) = et is the unique solution of given problem. 
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1.6.3. Exercise. 

1. Solve the differential equation dy
dt

 = ty, y(0) = 1 by Picard’s method. 

2. Solve the initial value problem dy
dt

 = t2y . y(0) = 1 by Picard’s method. 

3. Solve the initial value problem dy
dt

 = y, y(1) = 1 by method of successive approximations. 

Solution. 

1. φ (t) = 2

2t

e  . 

2. φ (t) = 3

3t

e  . 

3. φ (t) = 1te − . 

1.7. Dependence of Solutions on Initial Conditions. 

Consider the first order I V P 

     

 .           (1) 

It has the solution (exercise, to obtain it) 

  ,         (2) 

which passes through the point . The functions  in (2) can be considered as function, not 
only , but of the coordinates of point , through which the  solution curve passes. The 
solution function   in (2), without any confusion /ambiguity can be written as  

  .         (3) 

Now, we shall investigate the behavior of the solutions as functions of the initial conditions for the 
general problem. 

Let  be continuous and satisfy a Lipschitz condition w. r. t.  in a domain . Let  be a 
fixed point of . Now, by Picard’s existence and uniqueness theorem, the initial value problem 

  ,  

  ,          (1) 

has a unique solution   defined as some sufficiently small interval [t0- h0, t0+ h0] around  . Now 
suppose that the initial -value is changed from  to . Our first concern is whether or not the new 
initial – value problem 
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   ,  

    ,          (2) 

also has a unique solution on some sufficiently small interval . If Y0 is such that 
 is sufficiently small, then we can be certain that the problem (2) does possess a unique 

solution on some such interval . In fact, let the rectangle , 
, lie in  and let  be such that  Then, by Picards theorem, this 

problem has a unique solution y which is defined and contained in  for , where 
 and  for . Thus we may assume that there exists 

 and  such that for each  satisfying , problem (2) possesses a unique 
solution  on  (see Figure  below). 

 

 
 

Plots of solution for different values of  

To illustrate this, consider the I VP  

  

 ,  

Its solution is   

 , 

and is only defined for the interval . Here,  can be regarded as an arbitrary constant 
and, as  varies, the solutions fill the entire  plane. The general solution is shown in the following 
figure (6.2). Nevertheless, for each particular value , the corresponding unique solution is defined 
only over an interval whose size depends on . 
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We are now in a position to state the basic theorem concerning the dependence of solutions on initial 
conditions. 

 

1.7.1. Theorem. Let  be continuous and satisfy a Lipschitz condition with respect to , with Lipschitz 
constant , in a domain  of the  plane; and let  be a fixed point of . Assume there exists 

 and  such that for each  satisfying  the I VP 

 ,  

    , 

possesses a unique solution  defined and contained in  on . Let  denote the 
unique solution of I VP when  , and denotes the unique solution of I VP when , 
where . Prove that 

     on  . 

Proof. From Picards theorem, we know that 

          (1) 

where 

      (2) 

and   
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In like manner,  

          (3) 

where   

     (4) 

and   

We shall show by induction that 

         (5) 

on , where  is the Lipschitz constant. We thus assume that on , 

        (6) 

Then 

   

     . 

Applying the Lipschitz condition, we have 

   

and so, since 

  . 

Therefore, 

      (7) 

Using the assumption (6), we have 

   

 (8) 

Since 

        (9) 

We have 

          (10) 

which is (6) with  replaced by . 
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Also, on , we have 

    

          

      

     .       (11) 

Thus (10.23) holds for . Hence the induction is complete and (5) holds on [t0, t0+h]. Using similar 
arguments on , we have 

    

        

for all  on ,  Letting , we have 

           (12) 

But , and so we have obtained the desired inequality 

      on   .       (13) 

This completes the proof of the theorem. 

1.7.2. Corollary. The solution  of I V P is a continuous functions of the initial value  at 
. 

Proof :- It follows immediately from the results of the above theorem. 

1.8. Check Your Progress. 

Solve the following initial value problems by method of successive approximations, 

(i) dy
dx

 = –t y  , y(0) = 1. 

 (ii) dy
dt

 = 2y  , y(0) = 1 

(iii) dy
dt

 = t(y – t2 + 2), y(0) = 1. 
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1.9. Summary. 

In this chapter, we discussed about various methods to obtain the solution of a given initial value 
problem. Also, it is observed that whenever the continuous function in initial value problem satisfies 
Lipschitz condition, the uniqueness of the solution function holds.  

Books Suggested: 

1. Coddington, E.A., Levinson, N., Theory of ordinary differential equations, Tata McGraw Hill, 
2000. 

2. Ross, S.L., Differential equations, John Wiley and Sons Inc., New York, 1984.



 

 
2 

Linear Systems and Second Order Differential Equations 

Structure 

2.1. Introduction. 
2.2. Basic Definitions. 
2.3. Linear Homogeneous system. 
2.4. Adjoint System. 
2.5. Non-Homogeneous Linear System. 
2.6. Linear systems with constant coefficients. 
2.7. Linear Differential Equations of Order n. 
2.8. Adjoint Equations. 
2.9. The non homogeneous linear equation of order n. 
2.10. The linear equation of order n with constant coefficient. 
2.11. Linear Second Order Equations. 
2.12. Check Your Progress. 
2.13. Summary. 
2.1. Introduction. This chapter contains results related to the properties of solutions of linear systems. 
The relation between fundamental matrix of a linear homogeneous system and its adjoint system are 
obtained. 

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Fundamental set and fundamental matrix of a linear homogeneous system. 

(ii) Wronskian of solutions of linear differential equations of order n. 

(iii) Relation between the zeros of solution of second order differential equations. 
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2.1.2. Keywords. Fundamental matrix, Wronskian, Zeros of solutions. 

2.2. Basic Definitions. 

2.2.1. Norm of a Matrix. Let A is a matrix of complex numbers (aij) with n rows and n columns then we 
define the norm of A, denoted by A , by 

 A  = 
n

ij
i,j = 1

a∑  e.g.  A = 2 3 3 4i i
1+i i
+ − 

 − 
, A  = 13  + 5 + 2  + 1  

Note. In case x is an n-dimensional vector that is, x ∈ cn, represented as a matrix of n rows and one 
column, then the vector magnitude is defined as  

  x  = 
n

i
i = 1

x∑   where x = 

1

2

n

x
x
 
x

 
 
 
 
 
 


. 

It can be easily seen that the norm satisfies the following properties, 

(i) A + B  ≤  A  + B  

(ii) AB  ≤  A . B  

(iii) Ax  ≤  A . x  

where A and B are n×n matrices and x is a n-dimensional vector. 

2.2.2. Distance Between Two Matrices. The distance between two matrices A and B is defined by 
A B−  and distance satisfies the usual properties of metric. 

Notation. The zero matrix will be denoted by O and the unit matrix by E. If there is danger of confusion 
concerning the dimension, these n-by-n matrices will be denoted by On and En respectively. 

Note that nO  = 0 and nE  = n. 

2.2.3. Complex conjugate of a matrix.  

 Let  A = ij n n
a

×
     then   A  = ij

n n.
a

×
    

2.2.4. Transpose of a matrix. 

 Let  A = ija     then  AT = jia    

2.2.5. Conjugate transposed of a matrix.  

 Let A = ija     then  A∗  =  ( A )T = ( )TA  
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Note.  

(i) A∗  = TA  = A  = A  

(ii) (AB)∗   = B∗ A∗ , known as reversal law. 

(iii) The determinant of A is denoted by det A. Here norm of A i.e A  should not be confused with 

determinant of A. 

(iv) The notation A'  will be reserved for differentiation, when A is a matrix function. That is why we 
are using AT for transpose of matrix A. 

(v) If det A = 0, then A is said to be singular A non-singular matrix possesses an inverse, A–1, which 
satisfies A A–1 = A–1A = E. 

2.2.6. Characteristic Roots. Let A be a n×n complex matrix then det (λE –A ), which is a polynomial 
in λ  of degree n, is called the characteristic polynomial of A and its roots are called characteristic roots 
of A. If these roots are denoted by λ i, i = 1,…, n, then clearly 

  det (λE –A ) = )
n

i
i = 1

(λ −λ∏  

2.2.7. Similar Matrix. Two n×n complex matrix A and B are said to be similar if there exist a non-
singular n-by-n complex matrix P such that B = PAP–1. 

If A and B are similar, then they have the same characteristic polynomial, for  

det(λE –B)= det(λE – PAP–1) = ( )1P( E A)P−λ −  = detP.det(λE –A).det P–1 = det(λE –A) 

Also, if A and B are similar, then  

(i) det A = det B 

(ii) trA = TrB, that is, determinant and trace are invariant under similarity transformations. 

Now, the following fundamental result concering the canonical form of a matrix is assumed. 

2.2.8. Theorem. Every complex n-by-n matrix a is similar to a matrix of the form 

  

0

1

0   0   ... 0
 0   ...0 0

0 0.     .     .
0 0   0   ... s

J
J

J

J

 
 
 =
 
 
   

where J0 is a diagonal matrix with diagonal entries 1, λ 2, …, λ q, and  
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 Ji =  
0

q+i

q+i

      1       0      0           0          0
 0            1      0           0          0
...............................................................
        0        0      0          

λ

λ







0
q+i

q+i

        1
        0        0      0            0        

 
 
 
 
 

λ 
 

λ  

  

i = 1, 2, …, s. 

The λ j, j = 1, 2,…, q + s, are the characteristic roots of A, which need not be all distinct. If λ j is a simple 
root, then it occurs in J0, and therefore, if all the roots are distinct, A is similar to the diagonal matrix 

 

1

2

0   0   ... 0
 0   ...0 0

0 0.     .     .
0 0   0   ... s

J

λ
λ

λ

 
 
 =
 
 
 

 

Remark. (i) It follows from above theorem-1 that  

   det A = iλ∏  and tr A = iλ∑  

where the product and sum are taken over all roots, each root counted a number of times equal to 
multiplicity. 

(ii) The 's
iJ  are of the form Ji = λ q+i 

ir
E + Zi where Ji has ri rows and columns, and 

  Zi =  
0
0

0    1     0     0           0     0
0    0     1     0           0     0
...............................................

    0     0     0           0     1
    0     0     0           0     0





















 
 
 

 

(iii) If we square the matrix Zi then it can be found that the matrix 2
iZ  has its diagonal of 's1  moved 

one element to the right from that of Zi and all other elements zero. From this it follows that 1r
iZ −  is a 

matrix which contains all zeros except for a single 1 in the first row and last column. Hence ir
iZ  is the 

zero matrix and therefore Zi is nilpotent.  

2.2.9. Convergent Sequence of Matrices. Let {Am} is a sequence of matrices then this sequence is said 
to be convergent if for given any ∈ > 0, there exist a positive integer N∈  such that 

  p qA A−  < ∈ whenever p, q > N∈ . 

The sequence {Am} is said to have a limit matrix A, if for given any ∈ > 0, there exist a positive integer 
N∈  such that  
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  mA A−  < ∈ whenever m > N∈ . 

Remark. Clearly {Am} is convergent if and only if each of the component sequences is convergent. 
Therefore we can say that {Am} is convergent If and only if there exists a limit matrix to which it tends. 

The infinite series m
m = 1

A
∞

∑  is said to be convergent if the sequence of partial sums is convergent, and the 

sum of the series is defined to be the limit matrix of the partial sums. 

2.2.10. Exponential of a matrix. A particular series which is of great importance for the study of linear 
equations is the exponential of a matrix A, which is defined as  

  eA = E + 
m

m = 1

A
m!

∞

∑   

where Am represents the mth power of A. The series defining eA is convergent for all A, since for any 
positive integer p, q, 

 
mmp+q p+q

m =p +1 m =p +1

AA     
m! m!

≤∑ ∑   

and the latter represents the Cauchy difference for the series Ae  which is convergent for all finite A . 

Remark. For matrices, it is not in general true that eA + B = eA.eB, but this relation is valid if A and B 
commute that is, AB = BA. Now since – A and A commute, so we have  

  eA–A = eA.e–A ⇒  E = eA.e–A     [Since e0 = E] 

⇒  ( ) 1Ae
−

.E = ( ) 1Ae
−

eA.e–A ⇒  ( ) 1Ae
−

 = e–A . 

2.2.11. Caylay – Hamilton Theorem. 

 Every matrix A satisfies its characteristic equation det(λE –A) = 0. This theorem is sometimes useful 
for the calculation of eA. As a simple example, let  

 A = 0    1
0    0
 
 
 

 then det (λE –A) = λ 2 = 0 

is the characteristic equation. So by Caylay – Hamilton theorem, A2 = 0, which implies that Am = 0, m > 
1. Hence 

 eA = E + A = 0    1
0    1
 
 
 

 + 0    1
0    0
 
 
 

 = 1    1
0    1
 
 
 

  

2.2.12. Matrix of Functiions. Let Φ  is an n-by-n matrix of functions defined on a real t interval I (the 
functions may be real or complex) then Φ  is said to be continuous, differentiable or analytic on I if 
every element of Φ  is continuous, differentiable or analytic on I respectively. 
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If Φ  is differentiable on I, then 'Φ  denotes the matrix of derivatives. If Φ  and ψ  are differentiable then 

( ) 'Φψ  = 'Φ ψ  + Φ 'ψ  and also 'Φ ψ  ≠  ψ 'Φ , in general. 

2.3. Linear Homogeneous system. Let A be a continuous n×n matrix of complex functions on a real t 
interval I. the linear system 

  dy
dt

 = A(t) y, t ∈ I      (LH) 

is called a linear homogeneous system of nth order. We have shown in the UNIT-I that given any y0, and 
t0 ∈ I, there exists a unique solution φ  of (LH) on I such that φ (t0) = y0. 

The zero vector function on I is always a solution of (LH). This will be called the trivial solution of 
(LH). If any solution of (LH) is zero for any t0 ∈ I, then, by uniqueness, it must be zero throughout I. 

2.3.1. Theorem. The set of all solutions of linear homogeneous system of nth order 

  dy
dt

 = A(t) y, t ∈ I     (LH) 

on I form an n-dimensional vector space over complex field. 

Proof. Let S be the set of all solutions of (LH). Since 0 ∈ S so S is non-empty. 

Let φ 1, φ 2 ∈ S and c1, c2 be two complex numbers. Then 

 1d
dt
φ  = A(t) φ 1(t) and  2d

dt
φ  = A(t) φ 2(t) 

Now, d
dt

 [ ]1 21 2c cφ + φ  = c1  1d
dt
φ  + c2  2d

dt
φ  = c1A(t)φ 1(t)+c2A(t)φ 2(t) = A(t)[c1φ 1(t)+c2φ 2(t)]  

which proves that c1φ 1(t)+c2φ 2(t) is also a solution of system (LH) and hence c1φ 1+c2φ 2∈S. Hence S is 
a vector space. 

Now to show that the vector space S is n-dimensional, it is required to establish a set of n linearly 
independent solution φ 1, φ 2,…, φ n such that every member of S is a linear combination of φ 1, φ 2,…, 
φ n.  

We know that y – space is n – dimensional. Let iξ , 1≤ i≤n be n linearly independent points in the n – 
dimensional y – space. For example, each iξ  may be taken as a vector with all components zero except 
the ith, which is 1. Then by existence theorem, if t0 ∈ I, there exist n solutions φ 1, φ 2,…, φ n of (LH) such 
that φ i (t0) = iξ . Now we shall prove that these solutions satisfy our required conditions. 

First we prove that these φ 1, φ 2,…, φ n are linearly independent. Let, if possible, φ 1, φ 2,…, φ n are 
linearly dependent, there must exist n complex numbers c1, c2,…, cn, not all zero, such that  

  c1φ 1(t) + c2φ 2(t) +…+ cnφ n(t) = 0 for t ∈ I 

In particular, taking t = t0, we get 
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  c1φ 1(t0) + c2φ 2(t0) +…+ cnφ n(t0) = 0  

 ⇒  1 1 2 2 ... 0n nc c cξ ξ ξ+ + + =  

which give that 1 2, ,..., nξ ξ ξ  are linearly dependent, a contradiction to the assumption that 's
iξ  are linearly 

independent. This shows that φ 1, φ 2,…, φ n are linearly independent. 

Secondly, we shall prove that φ 1, φ 2,… , φ n generates S. Let φ (t) be any solution of (LH) on I such that 
φ (t0) = ξ . Now ξ  belongs to n – dimensional y – space and 1 2, ,..., nξ ξ ξ  is a basis of y – space. So there 
exist unique scalars (complex numbers) k1, k2, …, kn such that 

 1 1 2 2 ... n nk k kξ ξ ξ ξ= + + +      (1) 

Now the function 

 k1φ 1(t) + k2φ 2(t) +…+ knφ n(t) 

is a solution of (LH) on I which assumes the value ξ  at t0 as  

 k1φ 1(t0) + k2φ 2(t0) +…+knφ n(t0) = 1 1 2 2 ... n nk k kξ ξ ξ ξ+ + + =     

Therefore by the uniqueness of solution k1φ 1(t) + k2φ 2(t) +…+knφ n(t) must be equal to φ (t). 

Hence every solution φ (t) of system (LH) is a linear combination of φ 1(t), φ 2(t), …, φ n(t). Therefore the 
set {φ 1, φ 2, …, φ n} is a basis of the vector space S, so S is a n – dimensional vector space. 

2.3.2. Fundamental set of solutions. If φ 1, φ 2, …, φ n are a set of n linearly independent solutions of 
(LH) they are said to form a basis or fundamental set of solutions. 

2.3.3. Fundamental matrix. If Φ  is a matrix whose n columns are n linearly independent solutions of 
(LH) on I, then Φ  is called a fundamental matrix for (LH). Clearly, fundamental matrix Φ (t) satisfies 
the matrix equation  

  'Φ (t) = A(t) Φ (t), t ∈ I    (1) 

By the matrix differential equation associated with (LH) on I is meant the problem of finding an n – by – 
n matrix Φ (t) whose columns are solutions of (LH) on I. This problem is denoted by 

  X'(t)  = A(t) X(t), t ∈ I     (2) 

The matrix Φ (t) is called a solution of (2) on I and Φ  satisfies (1). 

From above theorem it is now evident that a complete knowledge of the set of solutions of (LH) can be 
obtained if we know a fundamental matrix for (LH), which is, of course a solution of (2). 

2.3.4. Liouville’s Formula. Let A(t) be a n×n matrix with continuous elements on an interval I = [a, b] 
and suppose Φ (t) is a matrix of functions on I satisfying the matrix differential equation  

 'Φ (t) = A(t) Φ (t), t ∈ I 

Then det Φ (t) satisfies the first order equation  
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 ( )( ) 'det tΦ  = ( )tr A(t) ( )( )det tΦ , on I and for t0, t ∈ I, and  

 det Φ (t) = { }( )0det tΦ  exp 
0

t

t
tr  A(s) ds 

  ∫ . 

Proof. Let  Φ (t) = ( )ij n n
t

×
 Φ   and  A(t) = ( )ij n n

a t
×

      (1) 

Then the given matrix differential equation gives the following scalar differential equations. 

 ' ( )ij tφ  = ( )
n

ik kj
k = 1

a t  (t)φ∑       (2) 

for i, j = 1, 2,…, n. We know that the derivative of det Φ (t) is sum of n determinants and given by  

( )( ) 'det tΦ  = 

11 12 1

221 22

1

' ( ' ( ' (
' (' ( ' (
......

' ( ' ( ' (

n

n

n n2 nn

t) t)    ..... t)
t)t) t)    .....

  ......    .....      .....   
t) t)    ..... t)

φ φ φ
φφ φ

φ φ φ

 + 

11 12 1

221 22

1

( ( (
' (' ( ' (
......

( ( (

n

n

n n2 nn

t) t)     ..... t)
t)t) t)    .....

  .....   .....       .....   
t) t)     ..... t)

φ φ φ
φφ φ

φ φ φ

  

+….+ 

11 12 1

221 22

1

( ( (
(( (

......
' ( ' ( ' (

n

n

n n2 nn

t) t)    ..... t)
t)t) t)    .....

  ...... ......       .....  
t) t)    ..... t)

φ φ φ
φφ φ

φ φ φ

  (3) 

Using (2) in the first determinant on the right, we get  

  1∆  = 21 22 2

1

1k k1 1k k1 1k k1
k k k

n

n n2 nn

a a aφ φ φ

φ φ φ

φ φ φ

∑ ∑ ∑



   



  

and this determinant unchanged if one subtracts from the first row a12 times the second row plus a13 
times the third row up to a1n times the nth row. This gives  

  1∆  = 
11 12 1

21 22 2

1

11 11 11 n

n

n n2 nn

a a a
  

φ φ φ
φ φ φ
φ φ φ







 = a11 detΦ (t) 

Carrying out a similar procedure with the remaining determinants, we get by (3),  

( )( ) 'det tΦ  = (a11 + a22 +…+ ann) det Φ (t) = (trA) (detφ )   (4) 

This proves the first part of the theorem. 

Let u = det Φ (t), α (t) = trA(t). Then equation (4) can be rewritten as 
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  du (t)u(t)
dt

−α  = 0 or du  = (t) dt
u

α  

⇒  u(t) = C exp 
0

t

t
(s) ds α  ∫ , where C is a constant of integration. 

On putting t = t0 both sides, we get C = u(t0). Hence we get 

 u(t) = u(t0) exp 
0

t

t
(s) ds α  ∫  

Consequently, det Φ (t) = det Φ (t0) exp 
0

t

t
tr (A) ds Φ  ∫  which completes the proof. 

2.3.5. Theorem. A necessary and sufficient condition that a solution matrix Φ (t) of  

  X' (t) = A(t) X(t)     (1) 

to be a fundamental matrix of (LH) is that det {Φ (t)} ≠  0 for all t ∈ I. 

Proof. Since Φ (t) is a solution of (1), so 

  'Φ (t) = A(t) Φ (t) 

Then we know that  

  [ ]d det (t)
dt

Φ  = tr(A) det Φ (t)    (2) 

and  det Φ (t) = det Φ (t0) exp 
0

t

t
tr A(s) ds∫    (3) 

By relation (3), it is clear that if det Φ (t0) ≠  0 then det Φ (t) ≠  0 for all t ∈ I. Now let Φ (t) be a 
fundamental matrix with column vector φ 1, φ 2,…, φ n. Let us suppose that φ (t) be any non-trivial 
solution of (LH). Then φ (t) must be unique linear combination of φ 1, φ 2,…, φ n, so there exist unique 
constants c1, c2,…, cn (not all zero) such that 

  φ (t) = c1φ 1(t) + c2φ 2(t) +…+ cnφ n(t)   (4) 

Here φ (t), φ 1(t),…, φ n(t) all are n – by – 1 column matrices of functions therefore relation (4) is a 
system of n linear equations in the n unknowns c1, c2,…, cn at any t0 ∈ I and has a unique solution for 
any choice of φ (t0). Hence det Φ  (t0) ≠  0 and so we must have by relation (3) that  

  det Φ (t) ≠  0 for any t ∈ I. 

Conversely, let Φ (t) be a solution matrix of (1) and suppose that det Φ (t) ≠  0 for all t ∈ I. Then 
columns vectors of Φ (t) must be linearly independent at every t ∈ I. Hence by definition of 
fundamental matrix, Φ (t) is a fundamental matrix of (LH). 
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2.3.6. Theorem. If Φ  is a fundamental matrix of (LH) that is, dy
dt

 = A(t)y, t ∈ I and c a complex 

constant non-singular matrix then Φ c is again a fundamental matrix of (LH). Further every fundamental 
matrix of (LH) is of this type for some non-singular c. 

Proof. If Φ  is a fundamental matrix then 'Φ (t) = A(t) Φ (t), t ∈ I  

 ⇒  'Φ (t) c = A(t) Φ (t)c  ⇒  ( c)'Φ  = A(t) (Φ c) 

which shows that Φ c is a solution of  

X' (t) = A(t) X(t). Also, det(Φ c) = (detΦ ) (det c) ≠  0  

Hence Φ c is a fundamental matrix. 

Further, If Φ 1 and Φ 2 are fundamental matrices, then we shall prove that Φ 2 = Φ 1c for some constant 
non-singular matrix C. To show this, let 1

1 2  = −Φ Φ ψ . Then Φ 2 = Φ 1ψ  

⇒  2 1 ' 1 = + ′ ′Φ Φ ψ Φ ψ  ⇒  AΦ 2 = Φ 1 'ψ  + AΦ 1ψ  1
2

1
2 1 1Since   = A  ,  = A Φ Φ Φ Φ   

⇒  AΦ 2 = Φ 1 'ψ  + AΦ 2 ⇒  Φ 1 'ψ  = 0 ⇒  'ψ  = 0 ⇒  ψ  = c (constant). 

Also c is non-singular since Φ 1 and Φ 2 are non singular. Hence Φ 2 = Φ 1c. 

2.4. Adjoint System. If Φ  be a fundamental matrix for (LH) system, then Φ –1 exist and we have  

   Φ –1Φ  = Φ Φ –1 = E 

Taking derivative both sides  

 ⇒  Φ –1Φ 1 + ( )11−Φ Φ  = 0 ⇒  ( )11−Φ  Φ  = – Φ –1Φ 1 

 ⇒  ( )11−Φ  = – Φ –1 Φ 1Φ –1     (1) 

As Φ  is a solution of (LH), we must have Φ 1 = A Φ     (2) 

putting this value from (2) in equation (1), we get 

  ( )11−Φ  = – Φ –1 A Φ Φ –1 = – Φ –1 A 

Taking conjugate transpose both sides 

  ( )
11−∗ Φ  
 = – A∗ ( ) 1−∗Φ     

This equation shows that ( ) 1−∗Φ  is a fundamental matrix for the system  

  (dy  = A t)y
dt

∗−       (3) 

2.4.1. Adjoint System. The system (3) is called the adjoint to (LH) system and the matrix equation 
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  (dY  = A t)Y
dt

∗−       (4) 

is called the adjoint to matrix equation (dY  = A t)Y
dt

∗ . 

2.4.2. Theorem. If Φ  is a fundamental matrix of linear homogeneous system 

(dy  = A t)y
dt

∗ , t ∈ I      (LH) 

Then ψ  is a fundamental matrix for its adjoint  

  (dy  = A t)y
dt

∗− , t ∈ I      (AS) 

if and only if ∗ψ Φ  = c, where c is a constant non-singular matrix. 

Proof. As Φ  is a fundamental matrix for (LH), so by definition, 1−∗Φ  is a fundamental matrix for the 
system (AS). Also we are given that ψ  is a fundamental matrix for (AS) system. Then we know that ψ  
must be of the type 

ψ  = 1−∗Φ D       (1) 

for some constant non-singular matrix D. Pre-multiplying (1) both sides by ∗Φ , 
∗Φ ψ  = D 

Taking conjugate transpose both sides  

  ∗ψ Φ  = D∗  = c (say). 

Conversely. Let us suppose that given condition is satisfied that is, ∗ψ Φ  = c 

Post multiplying both sides by Φ –1 , 

  ⇒  ∗ψ  = c Φ –1 

Taking conjugate transpose both sides 

  ψ  = 1−∗Φ  c∗  

But 1−∗Φ  is a fundamental matrix for (AS) system by definition. Hence by above theorem, it follows that 
ψ  is also a fundamental matrix for (AS). 

Remark.  

1. If matrix A is such that A = – A∗  that is, A is skew – hermitian. Then clearly, both the systems that is, 
(LH) system and (AS) system becomes same. Since 1−∗Φ  is a fundamental matrix for (AS), then it must 
be a fundamental matrix of (LH) also. Hence Φ , which is already a fundamental matrix for (LH), must 
be of the type Φ  = 1−∗Φ  C, c →  non – singular constant matrix  
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  ⇒  ∗Φ Φ  = c. 

2. We know that if Φ  is a fundamental matrix for (LH) and c is a non – singular constant matrix then 
Φ c is also a fundamental matrix for (LH). Here it should be noted that cΦ  is not a fundamental matrix 
of (LH), in general. 

3. Two different homogeneous systems can not have the same fundamental matrix. Since if Φ  is a 
fundamental matrix for (LH), then  

  Φ 1 = A(t) Φ   ⇒  A(t) = Φ 1(t) Φ –1(t) 

Hence Φ  determines a uniquely, although the converse is not true. 

2.5. Non-Homogeneous Linear System. Suppose A(t) is an n-by-n matrix of continuous functions on a 
real t interval, and b(t) is a continuous vector on I which is not identically zero there. The system 

dy
dt

 = A(t)y + b(t), t ∈ I   (NH)  

is called a non-homogeneous linear system of nth order. If the elements of A and b are continuous, then 
there exists a unique solution φ  of (NH) for which φ (t0) = y0 where t0 ∈ I and 0y  < ∞ . 

For uniqueness, let φ 1 and φ 2 be two solution of (NH) such that φ 1(t0) = y0, φ 2(t0) = y0, then their 
difference φ  = φ 1 – φ 2 would be a solution of (LH) on I and would satisfy φ (t0) = 0. But by the 
uniqueness theorem for (LH), φ (t) must be identically zero function on I and thus φ 1(t) = φ 2(t) for all t 
∈ I. 

Note. If a fundamental matrix Φ  for (LH) is known, then there is a simple method for calculating a 
solution of (NH). 

2.5.1. Theorem. If Φ  is a fundamental matrix for (LH) system 

dy
dt

 = A(t)y, t ∈ I     (LH) 

where A(t) is a n×n matrix, then the function defined by  

  (t)φ  = Φ (t) 1

0

t

t
(s) b(s) ds ,−Φ∫  t ∈ I.   (1) 

is a solution of non-homogeneous linear system 

dy
dt

 = A(t)y +b(t), t ∈ I    (NH) 

satisfying the initial condition φ (t0) = 0, t0 ∈ I. 

Proof. We know that linear combination of solutions of (LH) is also a solution of (LH). Therefore for 
any constant vector c, the function Φ c is a solution of (LH), here c is a n×1 matrix. We shall consider c 
as a function of t on I and determine what c must be (if it exists) in order that the function φ  = Φ c be a 
solution of the non-homogeneous system (NH). 
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Suppose φ  = Φ c is a solution of (NH). Then, since 'Φ  = AΦ  

'φ (t) = 'Φ (t)c(t) + Φ (t) c' (t) = A(t)Φ (t) c(t) + Φ (t) c' (t) = A(t)φ (t) + Φ (t) c' (t) (2) 

Also as φ  is a solution of (NH), so 

'φ (t) = A(t) φ (t) + b(t)      (3) 

Comparing (2) and (3), we have  

 Φ (t) c' (t) = b(t)  ⇒  c' (t) = Φ –1(t) b(t) 

Integrating both sides, we get  

  c(t) = 1

0

t

t
(s) b(s) ds ,−Φ∫  t0 ∈ I 

Here, we assume that C(t0) = 0. Hence, we have φ  = Φ c = Φ (t) 1

0

t

t
(s) b(s) ds ,−Φ∫  is a solution of (NH) 

with the condition φ (t0) = 0. 

Remarks 1. The formula (1) to find the solution of (NH) is called the variation – of – constants formula 
for (NH). 

(2) If Φ  is a fundamental matrix for (LH), then it can be easily seen that the solution φ (t) of (NH) 
which satisfies the initial condition φ (t0) = y0 is given by  

  φ (t) = φ h(t) + φ (t) 1

0

t

t
(s) b(s) ds ,−Φ∫  t ∈ I 

where  φ h(t) is that solution of (LH) on I which satisfies φ h(t0) = y0. 

(3) If ψ  is a fundamental matrix for the adjoint system  

  dy
dt

 = – A∗ (t)y      (AS) 

then the solution φ  of (NH) may be written as  

 φ (t) = 
1

ψ
−∗ (t) 

0

t

t
(s) b(s) ds ,ψ ∗∫  t ∈ I. 

Here it should be noted that if ψ  is a fundamental matrix for (AS) then 
1

ψ
−∗ (t) is for (LH). 

2.6. Linear systems with constant coefficients. Let A be an n× n constant matrix and consider the 
corresponding homogeneous system  

   dy
dt

 = Ay     (1) 

If n = 1, then it is trivial that (1) has a solution etA and the solution satisfying the initial condition φ (t0) = 

y0 ( )0 0t  <  , y  < ∞ ∞  is given by  
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   φ (t) = y0 0(t t )Ae −  

Here it should be noted that y and y0 are vectors of arbitrary finite dimension n, and A is an n× n matrix. 

2.6.1. Theorem. A fundamental matrix Φ  for the system  

    dy
dt

 = Ay    (1) 

is given by Φ (t) = etA, t  < ∞      (2) 

and the solution φ  of (1) satisfying the initial condition φ (t0) = y0 ( )0 0t  <   ,  y  < ∞ ∞  is given by 

  φ (t) = 0(t t )Ae −  y0  ( )t  < ∞    (3) 

Proof. We have  

  (t + t )Ae ∆  = etA tAe∆  ⇒  
(t + t )A tAe e

t

∆

∆
−  = 

tA  tA tAe  e e
t

∆

∆
−  

  ⇒  
(t + t )A tAe e

t

∆

∆
−  = 

tA
tAe E e

t

∆

∆
 −
 
 

 

Taking limits t 0∆ →  both sides  

 
t 0

lim
∆ →

 
(t + t )A tAe e

t

∆

∆
−  = 

tA
tA

t 0

e Elim e
t

∆

∆ ∆→

 −
 
 

 ⇒  d
dt ( )tAe  = A etA 

which shows that Φ (t) = etA is a solution of system (1). Now to prove that Φ (t) is a fundamental matrix 
it remains to prove that detΦ (t) ≠  0 “ we know that if Φ  is solution, that is, Φ  satisfies 'Φ (t) = 

a(t)Φ (t) on I then detΦ (t) = detΦ (t0)exp
0

t

t
tr A(s) ds∫ , t, t0 ∈ I ”. 

Using this reslt for the given system and for t0 = 0 to otain 

 det Φ (t) = det Φ (0) exp 
0

t

t
tr A(s) ds∫  

Since Φ (0) = E so det Φ (t0) = det E = 1 

Therefore, 

 detΦ (t) = exp 
0

t

t
tr A.ds∫  = exp tr A 

0

t

t
ds∫  = exp t trA = et trA. 

Thus Φ  is a fundamental matrix. 

Also it is obvious that solution passing through (t0, y0) that is, satisfying the initial condition φ (t0) = y0 is 
given by 

  φ (t) = 0(t t )Ae −  y0. 
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2.7. Linear Differential Equations of Order n.  

Suppose a0, a1, …, an are (n+1) continuous (complex) functions defined on a real t interval I, and let Ln 
denote the formal differential operator  

 Ln = a0
n

n

d
dt

 + a1
n 1

n 1

d
dt

−

− +…+ an.       

If g is any function possessing n derivatives on I,  

 Lng = a0
n

n

d g
dt

 + a1
n 1

n 1

d g
dt

−

− +…+ ang. 

The differential equation Lny = 0, t ∈ I is defined to be the differential equation, a0(t) ≠  0 

 ( ) ( 1)1

0 0

( )( ) ... 0
( ) ( )

n n na ta ty y y
a t a t

−+ + + = ,   t ∈ I     (1) 

and is called a linear homogeneous differential equation of order n. The system associated with this 
equation (1) is then the vector equation 

 
dy

dt
 = A(t) y          (2) 

where A(t) = 

n n 1 1

0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
a a a

a a a
−

 
 
 
 
 − − − 
  







  

, y  = 

(1)

(2)

(n 1)

y

y

y
   

y −

 
 
 
 
 
 
 
  



   (3) 

Since (2) is a linear system with a continuous coefficient matrix A(t) on I so there exist a unique vector 
solution φ  of (2) on I satisfying  

 φ (t0) = 0y  

where t0 ∈ I, 0y  < ∞ . Thus φ 1, the first component of φ , satisfies 

 1 (1) 2 ( 1)
1 0 0 1 0 0 1 0 0( ) , ( ) ,..., ( )n nt y t y t yφ φ φ −= = = . 

2.7.1. Wronskian. If φ 1, φ 2, …, φ n are n solutions of Lny = 0, then the matrix 

   Φ  = 

1 2 n

1 2 n

(n 1) (n 1) (n 1)
1 2 n

' ' '
φ φ φ
φ φ φ

φ φ φ− − −
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is a solution matrix of (2). The determinant of this matrix is called the Wronskian of Ln y = 0 with 
respect to φ 1, φ 2,…, φ n and is denoted by W(φ 1, φ 2, …, φ n). It is a function of t on I for fixed φ 1, φ 2, 
…, φ n and its value at t is denoted by W(φ 1, φ 2, …, φ n) (t). We know that for the system (2), we have  

  det Φ (t) = det Φ (t0) exp 
0

t

t
tr A(s) ds∫ , t ∈ I   (4) 

By (3), we note that tr A(t) = 1

0

a
a
−  

Using this value of tr A and definition of Wronskian, we get  

 W(φ 1, φ 2, …, φ n(t)) = W(φ 1, φ 2, …, φ n) (t0) exp 
0

t 1
t 0

a (s)  ds
a (s)
−

−∫ , t ∈ I 

Remark. From above equation, it follows that if W(φ 1, φ 2, …, φ n) (t0) = 0 for some t0 ∈ I, then W(φ 1, 
φ 2, …, φ n) (t) = 0 for all t ∈ I. Also if W(φ 1, φ 2, …, φ n) (t0) ≠  0 for some t0 ∈ I then W(φ 1, φ 2, …, φ n) 

(t) ≠  0, for all t ∈ I, because exp 
0

t 1
t 0

a (s)  ds
a (s)
−

−∫  can never be zero. So, we can say that Wronskian of n 

solutions is either identically zero or no where zero on the interval I. 

2.7.2. Theorem. A necessary and sufficient condition that n solutions φ 1, φ 2, …, φ n of differential 

equation Ln y = 0, that is, a0(t) 
n

n
d y
dt

 + a1(t) 
n 1

n 1
d y
dt

−

− +….+ an(t) y = 0, a0(t) ≠  0 to be linearly dependent on 

interval I is that W(φ 1, φ 2, …, φ n) (t) = 0 for all t ∈ I. 

Proof. Let φ 1, φ 2, …, φ n be linearly dependent on I. Then there exist constants c1, c2, …, cn (not all 
zero) such that 

  c1φ 1(t) + c2φ 2(t) +…+ cnφ n(t) = 0 for all t ∈ I 

Also then, 

  (1) (1) (1)
1 1 2 2( ) ( ) ... ( ) 0n nc t c t c tφ φ φ+ + + =  

           

  ( 1) ( 1) ( 1)
1 1 2 2( ) ( ) ... ( ) 0n n n

n nc t c t c tφ φ φ− − −+ + + =  for all t ∈ I. 

For any fixed t0 ∈ I, these equations are linear homogeneous equations which are satisfied by 

 c1, c2, …, cn (not all zero). So, the determinant of the coefficients of c1, c2, …, cn that is, W(φ 1, φ 2, …, 
φ n) (t0) = 0. Then we must have W(φ 1, φ 2, …, φ n) (t) = 0 for all t ∈ I. 

Conversely, let us suppose that W(φ 1, φ 2, …, φ n) (t) = 0 for all t ∈ I. For any t0 ∈ I, the system linear 
equations 

  c1φ 1(t0) + c2φ 2(t0) +…+ cnφ n(t0) = 0 
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  (1) (1) (1)
1 1 0 2 2 0 0( ) ( ) ... ( ) 0n nc t c t c tφ φ φ+ + + =  

           

  ( 1) ( 1) ( 1)
1 1 0 2 2 0 0( ) ( ) ... ( ) 0n n n

n nc t c t c tφ φ φ− − −+ + + = . 

must have a non-trivial solution. Let  k1, k2, …, kn be such a solution. Then we consider the function 

  φ  = k1φ 1(x) + k2φ 2(x) + … + knφ n(x)    (1) 

Since φ 1(x),φ 2(x), …, φ n(x) are solutions of the given homogeneous linear differential equation, 
therefore φ (x) given by (1) is also a solution. Due to the system of linear eqautions, we have  

  φ (t0) = 0, 1'φ (t0) = 0, …, (n 1)φ − (t0) = 0. 

Therefore, by uniqueness theorem. 

  φ (t) = 0 for all t ∈ I 

 ⇒  k1φ 1(t) + k2φ 2(t) + …+ knφ n(t) = 0 for all t ∈ I 

 ⇒  φ 1(t),φ 2(t), …, φ n(t) are linearly dependent on the interval I as k1, k2,  …, kn are not all 
zero. Hence the theorem. 

2.7.3. Corollary. A necessary and sufficient condition that n solutions φ 1,φ 2,…,φ n of Lny = 0 on an 
interval I be linearly independent there is that  

  W(φ 1, φ 2, …, φ n) (t) ≠  0, for all t ∈ I 

Proof. Let φ 1, φ 2, …, φ n are linearly independent. Let, if possible, W(φ 1, φ 2, …, φ n) (t) = 0 for all t ∈ I. 
Then, by above theorem, φ 1,φ 2, …, φ n would become linearly dependent, a contradiction. Hence we 
must have W(φ 1, φ 2, …, φ n) (t) ≠  0, for all t ∈ I. 

Conversely, let us suppose that W(φ 1, φ 2, …, φ n) (t) ≠  0, for all t ∈ I. We have to prove that φ 1,φ 2, …, 
φ n are linearly independent. Let, if possible, φ 1,φ 2, …, φ n are linearly dependent. Then by above 
theorem, wronskian must be zero on interval I, which is not so. So  

φ 1,φ 2, …, φ n must be linearly independent. 

2.7.4. Theorem. Every solution of Lny = 0 is a linear combination with complex coefficients of any n 
linearly independent solutions. 

Proof. We know that the equation Lny = 0 is of the type  

  
dy

dt
 = A(t) y        (1) 
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where  A(t) = 

n n 1 1

0 0 0

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
a a a

a a a
−

 
 
 
 
 
 
 − − −
 
 





     



  

, y  = 

(1)

(2)

(n 1)

y

y

y
   

y −

 
 
 
 
 
 
 
  



 

Now, we have proved the set of solutions of linear homogeneous system of nth order, that is, (1) form an 
n-dimensional vector space over complex field. So every solution vector of (1) is a linear combination of 
n linearly independent vector solution and, therefore, every solution of Ln y = 0 is a linear combination 
of n linearly independent solutions of Ln y = 0.   

This proves the theorem. 

2.7.5. Fundamental Set. A set of n linearly independent solutions of Ln y = 0 is called a basis or 
fundamental set of Ln y = 0. 

2.7.6.Theorem. Suppose φ 1,φ 2, …, φ n are n functions which possess continuous nth order derivatives of 
a real t interval I, and W(φ 1, φ 2, …, φ n) (t) ≠  0 for all t ∈ I. Then there exist a unique homogeneous 
differential equation of order n (with coefficient of y(n) one) for which these functions form a 
fundamental set, namely  

  1 2

1 2

( , , ,..., )( 1) 0
( , ,..., )

n n

n

W y
W

φ φ φ
φ φ φ

− =   

Proof. Consider the differential equation W(φ 1, φ 2, …, φ n) = 0, that is,  

  

1 2 n

1 2 n

(n) (n)(n) (n)
1 2 n

y
y' ' ' '

y

φ φ φ
φ φ φ

φ φ φ





    

    



 = 0    (1) 

t ∈ I. If we expand this determinant by first column, we see that the coefficient of 
n

n
d y
dt

 is  

  

1 2 n

1 2 n
n

(n 1) (n 1) (n 1)
1 2 n

' ' '
( 1)    

φ φ φ
φ φ φ

φ φ φ− − −

−





   

   



 = (–1)n W(φ 1, φ 2, …, φ n) 
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which is not zero on the interval I by the given hypothesis of the theorem. Therefore equation (1) is a nth 
order linear homogeneous differential equation. If we divide differential equation (1) by (–1)n W(φ 1, φ 2, 
…, φ n) then coefficient of y(n) would become unity, and differential equation would become  

  1 2

1 2

( , , ,..., )( 1) 0
( , ,..., )

n n

n

W y
W

φ φ φ
φ φ φ

− =       (2)  

which is the required type of differential equation.  

Further it is clear from equation (1) that φ 1, φ 2, …, φ n are solutions of differential equation (1) as two 
columns of (1) become identical. Moreover, W (φ 1, φ 2, …, φ n) (t) ≠  0 for all t in I, so φ 1, φ 2, …, φ n 
are linearly independent. Hence solution φ 1, φ 2, …, φ n from a fundamental set of differential equation 
(*) on interval I. 

The uniqueness of (*) follows from the fact that the corresponding vectors iφ  (i = 1, 2, …, n) with 

components φ i,  iφ′ , …, (n 1)
iφ
−  determine the coefficient matrix A(t) of the associated system 

  


dy  =  A(t) y
dt

       (3) 

where  

  A(t) = 

n n 1 1

0 0 0

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
a a a

a a a
−

 
 
 
 
 
 
 − − −
 
 





     



  

   (4) 

uniquely. Since there is a one – to – one correspondence between linear equation of order n and linear 
system of the type (3) and (4), the proof is complete. 

2.8. Adjoint Equations. Connected with the formal operator  

 Ln = a0 (t) 
n

n

d
dt

 + a1(t)
n 1

n 1

d
dt

−

− + …+ an(t), 

t ∈ I, there is another linear operator of order n denoted by +
nL , called the adjoint of Ln, as 

 +
nL  = n( 1)−  

n

n

d
dt

 
 
 

 { }0a (t)  + n 1( 1) −−
n 1

n 1

d
dt

−

−

 
 
 

{ }1a (t)  + …+ na (t) . 

If g(t) is any function on I which is such that ka (t) g(t) (k = 0, 1, 2, …, n) has n – k derivatives on I, then  

 +
nL g = n( 1)−  

n

n

d
dt

 ( )0a (t) g(t)  + n 1( 1) −−
n 1

n 1

d
dt

−

− ( )1a (t) g(t)  + …+ na (t)  g(t) 
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The equation +
nL y = 0, t ∈ I is called the adjoint equation to the differential equation Ln y = 0 on interval 

I. For example, let us find adjoint equation for second order differential equation  

 L2y = a0(t) 
2

2

d y
dt

 + a1(t) dy
dt

+ a2(t) y = 0   (1) 

where  ak (t) ∈ n kC −  and a0, a1, a2 are real valued functions k = 0, 1, 2, that is, a0(t) ∈ c2, a1(t) ∈ 1c  and 
a2(t) ∈ c and let a0(t) ≠  0 on the considered interval. Then, adjoint equation of (1) is given by 

 [ ]
2

2
0 1 22

d d( 1) a (t)y  + ( 1) '  a (t)y  + a (t)y
dtdt

− −    = 0 

⇒  0 0 1 1 2
d dy dya (t) a' (t)y a (t) a' (t)y + a (t)y
dt dt dt
 + − −  

 = 0  

⇒  
2

0 0 0 0 1 1 22
d y dy dy dya (t) a' (t) a' (t)  + a'' (t)y  a (t) a' (t)y + a (t)y

dt dt dtdt
+ + − −  = 0 

⇒  
2

0 0 1 0 1 22
d y dya (t) 2a' (t) a (t)  + a'' (t)y  a' (t) + a (t) y

dtdt
+ − −        = 0  (2) 

which is the required adjoint equation. For example, 

 L2 y = t2 
2

2
d y dy + 7t  + 8y

dtdt
 = 0. 

Here a0(t) = t2, a1(t) = 7t, a2(t) = 8 putting these values in equation (2), we get 

 t2 
2

2
d y dy 3t   3y  =  0

dtdt
− − . 

Special case. Consider the special case of Ln where a0(t) = 1, then  

 
1

1 11( ) ... ( ) 0
n n

n n n

d y d yL y a t a t y
dt dt

−

−= + + + =      (1) 

for all t ∈ I. We know that the associated linear system with (1) is  

  
dy

dt
 = A(t) y         (2) 

where  

 A(t) = 

n n 1 n 2 n 3 1

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
a a a a a− − −

 
 
 
 
 − − − − − 









    (3) 

The adjoint system for (2) is  
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dy

dt
 = – A∗ (t) y        (4) 

where 

  A∗ (t) = 

n

n 1

n 2

1

0 0 0 a

1 0 0 a

0 1 0 a

0 0 1 a

−

−

 
 
− 
 − 
 
 

−  







  



     (5) 

By (4) and (5), we have  

  d
dt

 

1

2

n

y
y

y

 
 
 
 
 
 


 = 

n

n 1

n 2

1

0 0 0 a

1 0 0 a

0 1 0 a

0 0 1 a

−

−

 
 
− 
 − 
 
 

−  







  



 

1

2

n

y
y

y

 
 
 
 
 
 


, where y  = 

1

2

n

y
y

y

 
 
 
 
 
 


 

Equating these two we get 

 1y'  = na yn, ky'  = –yk–1 + n k+1a −  yn, (k = 2, …, n)     (6) 

Thus if φ 1, φ 2, …, φ n is a solution of (6) for which (k)
kφ  and ( )(k 1)

n k+1a
−

−  exist, then we have 

 1'φ  = na  φ n 

 2'φ  = – φ 1 + n 1a −  φ n 

 3'φ  = – φ 2 + n 2a −  φ n        (7)  
   

 n'φ  = – φ n–1 + 0a  φ n  

Now differentiating kth relation of (7) (k–1) times and solving for (n)
nφ , we get 

 (n)
nφ  – ( )(n 1)

1 1a φ
−

+ ….+ (–1)n ( )n na φ  = 0      (8) 

By equation (8), we can say that φ n satisfies the equation +
nL y = 0,  that is,  

 (–1)n y(n) + (–1)n–1 ( )n 1
1a  y

−
+ …+ na y = 0 

which is just the adjoint equation of (1). 
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2.8.1. Lagrange’s Identity. In Ln = a0(t) 
n

n
d
dt

 + a1(t) 
n 1

n 1
d
dt

−

−
+ ….+ an(t), suppose ak ∈ Cn–k on I  for k = 0, 

1, 2, …, n. If u and v are any two (complex) functions on I possessing n derivatives there, then 

 v  Ln u – u +
nL v  = d

dt
 [P(u, v)] 

where P(u, v) is a form in (u, u' , …, u(n–1)) and (v, v' , …, v(n–1)) given by  

 P(u, v) = ( )
n m ( j 1)j 1 (m j)

n m
m = 1 j = 1

( 1)  u a v
−− −

−

 
− 

  
∑ ∑  

Proof. If U(t) and V(t) be any two functions, then  

( 1) ( 2) (1) ( 2) (1) ( 2) ( 1) ( 1)

( ) ( 1) (1) ( 1) (1) ( 2) (2) 2 (2) ( 2) 2 (1) ( 1)

... ( 1) ( 1)

         = ... ( 1) ( 1)
                                              

m m m m m m

m m m m m m m m

d U V U V U V UV
dt

U V U V U V U V U V U V

− − − − − −

− − − − − − −

 − + + − + − 

+ − − + + − + −
1 (1) ( 1) 1 ( )

( ) 1 ( )

                                        ( 1) ( 1)
        ( 1) .

m m m m

m m m

U V UV
U V UV

− − −

−

+ − + −

= + −

  

Hence, we get 

( ) ( ) ( 1) ( 2) (1) ( 2) (1) ( 2) ( 1) ( 1)( 1) ... ( 1) ( 1)m m m m m m m m mdU V UV U V U V U V UV
dt

− − − − − − = − + − + + − + −   (1) 

for m = 0, 1, 2, …, n. Applying the formula (1) for  

   U = u, V = a0 v , m = n  

   U = u, V = a1 v , m = n –1 

      

   U = u, V = an–1 v , m = 1 

   U = u, V = an v , m = 0, we get  

 ( ) (n)
0a v  u  = ( )(n)n

0( 1) u a v−  + ( 1) ( 1) ( 1)
0 0... ( 1) ( )n n nd u a v u a v

dt
− − − + + −   

 ( ) (n 1)
1a v  u −

 
= ( )(n 1)n 1

0( 1)  u a v
−−−  + ( 2) ( 2) ( 2)

1 1... ( 1) ( )n n nd u a v u a v
dt

− − − + + −   

              

 ( )n 1a v  u'−  = ( )n 1( 1) 'u a v '−−  + d
dt ( )n 1u a v−
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 ( )na v u = u na v  

Adding all the above equations and using the definition of Ln and +
nL , we get  

v  Ln u = u +
nL v  + d

dt ( )
n ( j 1)j 1 (n j)

0
j = 1

( 1)  u a v
−− −

 
− 

  
∑  + d

dt ( )
n 1 ( j 1)j 1 (n 1 j)

0
j = 1

( 1)  u a v
− −− − −

 
− 

  
∑  

+…+ d
dt ( )

1 ( j 1)j 1 (1 j)
n 1

j = 1
( 1)  u a v

−− −
−

 
− 

  
∑  

= u +
nL v  + d

dt ( )
n m ( j 1)j 1 (m j)

n m
m = 1 j = 1

( 1)  u a v
−− −

−

    − 
    
∑ ∑  

⇒   v  Ln u – u +
nL v  = d

dt
 [P (u, v)] 

where P(u, v) = ( )
n m ( j 1)j 1 (m j)

n m
m = 1 j = 1

( 1)  u a v
−− −

−

 
− 

  
∑ ∑  

Note. P(u, v) is called the bilinear concomitant associated with the differential operator Ln. 

2.8.2. Corollary (Green’s Formula).  

If the an in the differential linear operator Ln and u, v are the same as in the above identity, then for any 
t1, t2 ∈ I. 

 ( )2

1

t
+

n n
t

v L u u L v  dt−∫  = 
2t = t[P(u , v)]  – 

1t = t[P(u , v)]  = 2
1

t
t[P(u , v)]  

where P(u, v) is the bilinear concomitant associated with the differential operator Ln. 

Proof. We know by Lagrange’s identity that  

 v  Ln u – u +
nL v  = d

dt
[P(u, v)] 

Integrating both sides w.r.t. t between the limits t1 and t2, we get  

  ( )2

1

t
+

n n
t

v L u u L v  dt−∫  = 2
1

t
t[P(u , v)]  = 

2t = t[P(u , v)]  – 
1t = t[P(u , v)]  

Remark. If ψ  is a non – trivial solution of the adjoint equation 

+
nL v  = 0, t ∈ I         (1) 

then the problem of finding a non – trivial solution of the differential equation 
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Lny = 0         (2) 

is reduced to finding a solution φ  on the interval I of an ordinary differential equation of order (n –1), 
namely 

  P(y, ψ ) = c (constant) 

2.9. The non homogeneous linear equation of order n. On a real t interval I, suppose a0≠ 0,  

a1, a2, …, an and b are continuous functions and consider the equation  

 Lny = a0(t) y (n) + a1(t) y (n–1) + … + an(t) y = b(t), 

t ∈ I which is defined to be the same as  

 y (n) + (n 1)1

0

a (t)  y
a (t)

− + …+ n

0

a (t)
a (t)

 y = 
0

b(t)
a (t)

    (1) 

This equation is called (in case b(t) ≠  0) a non – homogeneous linear equation of order n. 

The system associated with this equation (1) is given by  

 
dy

dt
 = A(t) y   + b (t), t ∈ I      (2) 

where  

 A = 

n n 1 1

0 0 0

0 1 0 0 0
0 0 1 0 0

0 0 0 1 1
a a a

a a a
−

 
 
 
 
 
 
 − − −
 
 





  



  

 b (t) = 

0

0
0

0
b(t)
a (t)

 
 
 
 
 
 
 
 
 


 

2.9.1. Theorem. If φ 1, φ 2, …, φ n is a fundamental set of the homogeneous equation 

 Lny = y(n) + a1(t) y(n–1) + …+ an(t) y = 0 (ak ∈ C on I)     (1) 

then the solution ψ  of the non – homogeneous equation  

 Ln y = b(t), b ∈ C on I        (2) 

satisfying the initial condition ψ (t0) = y 0 is given by  

 ψ (t) = ψ h (t) + 
n

k
k = 1

(t)φ∑
1

0

1 2

1 2

( , ,..., )( ). ( )
( , ,..., )( )

t
k n

nt

W s b s ds
W s

φ φ φ
φ φ φ

  
 
  
∫    (3) 

where ψ h is the solution of Ln y = 0 for which ψ h(t0) = y 0 and Wk(φ 1, φ 2,…, φ n) is the determinant 
obtained from W(φ 1, φ 2,…, φ n) replacing the kth column by (0,…,0, 1). 
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Proof. First we recall a theorem that “If Φ  is a fundamental matrix for linear homogeneous system dy
dt

 

= A(t) y, then the function φ  defined by φ (t) = Φ (t) 
0

t
1

t

(s) b(s) ds  ,  t  IΦ− ∈∫  is a solution of non – 

homogeneous system dy
dt

 = A(t) y + b(t) satisfying the initial condition φ (t0) = 0, t0 ∈ I.” 

We know that system (2) is associated to the NH system given by  

  
dy

dt
 = A(t) y + b(t), t ∈ I     (*) 

By above theorem the first compotent ψ  = ψ 1 of the vector solution of (*) for which ψ (t0) = 0 is given 

by 

  ψ (t) = 
0

t

1n
t

 (t , s)γ∫  b(s) ds 

where 1n  (t , s)γ  is the element in the first row and nth column of the matrix Φ (t)Φ –1(s). Recall that the 

element in the ith row and jth column of Φ (t) is (i 1)
jφ
− , and  

detΦ (t) = W(φ 1, φ 2,…,φ n) (t). 

Now the element in the ith row and nth column of Φ –1 is given by 

  
1 2( , ,..., )

in

nW
φ

φ φ φ



 

where  inφ  is the cofactor of (n 1)
iφ

−  in Φ . 

Therefore, 

  W(φ 1, φ 2,…, φ n) (s) 1n  (t , s)γ  = 
n

k
k = 1

(t)φ∑  Wk (φ 1, φ 2,…, φ n) (s) 

where Wk(φ 1, φ 2,…, φ n) (s) is defined as in the statement of the theorem. Thus the solution ψ  of Ln y = 

b(t) satisfying ψ (t0) = 0 is given by  

  ψ (t) = 
n

k
k = 1

(t)φ∑
1

0

1 2

1 2

( , ,..., )( ). ( )
( , ,..., )( )

t
k n

nt

W s b s ds
W s

φ φ φ
φ φ φ

  
 
  
∫  

and obviously (3) gives the solution satisfying ψ (t0) = y 0, if ψ h(t0) = y 0. 
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2.10. The linear equation of order n with constant coefficient. 

Consider the case where in Ln the functions a0 = 1, a1,…,an are all constants. Then I may be assumed to 
be the entire real t – axis. In this case, 

  Ln y = y (n) + a1y (n–1) +…+ an y = 0     (1) 

has its associated system 

  
dy

dt
 = A(t) y         (2) 

where A is the constant matrix 

   A = 

n n 1 n 2 1

0 1 0 0
0 0 1 0

0 0 0 1
a a a a− −

 
 
 
 
 
 
 − − − − 





  





    (3) 

2.10.1. Lemma. The characteristic polynomial for A in (3) is given by  

  f(λ ) = λ n + a1λ n–1 +…+ an       (*) 

Proof. We shall prove the result by induction on n. For n = 1, we have A = [–a1] and hence 

det (λ E1 – A) = λ  + a1, and therefore (*) is true for n = 1. Assume that result is true for n –1 . Then 
expand 

 det (λ En – A) = 

n n 1 n 2 2 1

1 0 0 0
0 1 0 0

0 0 0 1
a a a a +a

λ
λ

λ
λ− −

−
−

−



      

by the first column, we notice that the coefficient of λ  is a determinant of order (n – 1) which is equal to 
det (λ En–1 – A1), where 

   A1 = 

n 1 n 2 n 3 1

0 1 0 0
0 0 1 0

0 0 0 1
a a a a− − −

 
 
 
 
 
 
 − − − − 





  





 

So by induction hypothesis, we have  

 det (λ En–1 – A1) = λ n–1 + a1λ n–2 +…+ an–1. 
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The only other non-zero element in the first column is an, and the contribution to det(λ E – A) due to an 
is an,itself because the cofactor of an is 1. Hence  

      det(λ E – A) = λ (λ n–1 + a1λ n–2 +…+ an–1) + an.1 = λ n + a1λ n–1 +…+ an–1λ  + an. 

Therefore characteristic polynomial for A is f(λ ) = λ n + a1λ n–1 +…+ an–1λ  + an. 

Note. The above lemma shows that f(λ ) can be obtained from Lny by changing y (k) to λ k. 

2.10.2. Theorem. Let λ 1, λ 2, …, λ n be the distinct roots of the characteristic equation 

 f(λ ) = λ n + a1λ n–1 + …+ an = 0      (1) 

and suppose λ i has multiplicity mi (i = 1, 2, …, s). Then a fundamental set for  

Ln y = y (n) + a1 y(n–1) + …+ any = 0 

is given by the n functions t k
t ie λ  (k = 0, 1, 2,…, mi–1; i = 1, 2,…, s)  (2) 

Proof. We know that, if λ I is a root of f(λ ) = 0 with multiplicity mi, then λ i is also a root of the 
equations f ' (λ ) = 0, f " (λ ) = 0,…, i 1 (m )f − (λ ) = 0. 

It is clear that Ln ( )te λ  = f(λ ) te λ        (3) 

and, in general, 

 Ln ( )k tt  e λ  = Ln 
k

t
k
 e λ

λ

 ∂
  ∂ 

 = 
k

k
 

λ
∂
∂

 Ln ( )te λ  = 
k

k
 

λ
∂
∂

 ( )tf ( ) e λλ  [By (3)] 

        = ( ) ( 1) ( 2) 2( 1)f ( ) f ( ) f ( ) ... f ( )
2!

k k k k tk kk t t t e λλ λ λ λ− −− + + + +  
. 

From this it is now obvious that, for any fixed i, Ln ( )k t it  e λ  = 0 (k = 0, 1, 2,…, mi–1). 

This proves that the functions in (2) are solutions of Ln y = 0. Now we shall prove that the functions in 
(2) are linearly independent. Let, if possible, functions in (2) are not linearly independent. Then there 
exists constants Cik (not all zero) such that  

  
i 1ms

k t i
ik

i = 1 k = 0
C  t  e λ

−

∑ ∑  = 0  or  t i
i

i = 1
P  (t) e

σ
λ∑  = 0 

where Pi(t) are polynomial and σ  ≤  s is chosen so that P  σ ≡/  0 while iP  σ + (t) ≡  0, i ≥  1. Divide above 

expression by te iλ  and differentiate enough times so that the polynomial P1(t) becomes zero. Note that 
the degrees and the non – identically vanishing nature of the polynomials multiplying i 1( )te λ λ− , i > 1, do 
not change under this operation. Thus we get  

   t i
i

i = 2
 (t) e

σ
λθ∑  = 0 
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where iθ (t) has the same degree as Pi(t) for i ≥  2. Repeating the procedure we get finally a polynomial 
F(t) of degree equal to that of Pσ (t) such that F(t) = 0 for all t. This is impossible, since a polynomial 
can vanish only at isolated points. Thus the solutions are linearly independent. 

2.11. Linear Second Order Equations. One of the most frequently occurring type of differential 
equation in mathematics and physical sciences is the linear second order differential equation of the 
form 

  d dup(t)
dt dt
 
 
 

 + q(t) u = h(t) 

If h(t) = 0, then differential equation is said to be homogenous. Unless otherwise stated, it is assumed 
that the functions p(t) ≠  0, q(t) and h(t) are continuous on the considered interval. 

2.11.1. Theorem. If u(t) and v(t) are solutions of homogenous differential equation 

  ( )d dup t
dt dt
 
 
 

 + q(t) u = 0     (1) 

then there exist a constant c, depending on u(t) and v(t), such that their Wronskian W(t) satisfies 

 W(t) = 
( ) ( )
'( ) '( )

 u t        v t
 u t       v t

 = 
( )
c

p t
 that is, u(t) ( )v' t  – ( )u' t v(t) = c

p(t)
 

Proof. Since u(t) and v(t) are solutions of (1), so we must have  

  ( )d dup t
dt dt
 
 
 

 + q(t) u(t) = 0      (2) 

  ( )d dvp t
dt dt
 
 
 

 + q(t) v(t) = 0     (3) 

Multiplying equation (2) by v(t) and equation (3) by u(t) and subtracting, we obtain 

  v(t) ( )d dup t
dt dt
 
 
 

 – u(t) ( )d dvp t
dt dt
 
 
 

 = 0    (4) 

 

Consider  

( ) ( ) ( )

( ) ( )

( ) ( ) '( ) '( ) ( ) ( ) ( ) '( ) '( ) ( ) '( ) ( ) ( ) '( ) '( ) ( ) '( )

( ) ( ) '( ) ( ) ( ) '( ) (5)

d d dp t u t v t u t v t u t p t v t u t p t v t v t p t u t v t p t u t
dt dt dt

d du t p t v t v t p t u t                                      
dt dt

 − = + − − 

= −
By 

(4) and (5), we obtain 

( )( ) ( ) '( ) '( ) ( )d p t u t  v t u t  v t
dt
 −   = 0 ⇒  ( )( ) ( ) '( ) '( ) ( )p t u t  v t u t  v t−  = c = constant. 
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⇒  u(t) ( )v' t  – ( )u' t v(t) = 
( )
c

p t
 

2.11.2. Corollary. Show that the Wronskian of any pair of solutions of differential equation  

  
2

2
d u
dt

 + q(t)u = 0 is a constant.  

Proof. Take p(t) = 1 in above theorem. 

2.11.3. Lagrange’s Identity. Consider the differential equations 

 ( )d dup t
dt dt
 
 
 

 + q(t) u(t) = f(t) and ( )d dvp t
dt dt
 
 
 

 + q(t) v(t) = g(t) 

where f(t) and g(t) are continuous functions of t. Then, by the calculations employed in above theorem, 
we can obtain 

  ( )( ) ( ) '( ) '( ) ( )d p t u t  v t u t  v t
dt
 −   = g(t) u(t) – f(t) v(t). 

This relations is known as Lagrange’s Identity. 

2.11.4. Green’s Formula. Integrated form of Lagrange’s Identity is known as Green’s formula, that is, 

( )( ) ( ) '( ) '( ) ( )
t

a
p s u s  v s u s  v s −   = ( )( ) ( ) ( ) ( )

t

a
g s  u s   f s  v s  ds−∫   

 where a, t are points of considered interval. 

2.11.5. Theorem. If u(t) is a non-zero solution of the homogeneous differential equation 

  d dup(t)
dt dt
 
 
 

 + q(t) u = 0, t ∈ I 

Show that zeros of u(t) cannot have a cluster point (limit point) in I. 

Proof. Let, if possible zeros of u(t) has a cluster point in I, say t0 . Then by a theorem of real analysis, 
there exist a sequence of distinct points of interval I which converges t0 the point t0. Let t→ t0 through 
the sequence of zeros of u(t), then the continuity of u(t) implies 

  lim
0t t→

 u(t) = u(t0) ⇒  u(t0) = 0. 

Now, by definition of derivative, we have u' (t0) = lim
0t t→

 )0

0

u(t)  u(t
t  t
−
−

 = lim
0t t→

 
0

0  0
t  t
−
−

 = 0. 

So, we have obtained that u(t0) = u' (t0) = 0. Hence, by uniqueness theorem, we must have u(t) = 0, for 
all t ∈ I. 

which is a contradiction because u(t) is given to be a non-zero solution. So, our supposition is wrong and 
hence zero of u(t) cannot have a cluster point in I. 
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2.11.6. Non-oscillatory Function. A real-valued function f(t) defined and continuous in an interval [a, 
b] is said to be non-oscillatory, if f(t) has not more than one zero in [a, b]. If f(t) has at least two zeros in 
[a, b] then f(t) is said to be an oscillatory function in [a, b].  

For example, (i) f(t) = e –t + et for t ≥  0 is non-oscillatory. 

  (ii) f(t) = sin t, t ∈ [0, 4π ] then f(t) is oscillatory. 

2.11.7. Non-oscillatory Differential Equation. A second order differential equation  

  
2

2
d u
dt

 + dup(t)
dt

 
 
 

 + q(t) u = h(t), t > 0 

is called non-oscillatory, if every solution u = u(t) of it is non-oscillatory, otherwise the given 
differential equation is called oscillatory.  

2.11.8. Example. (i) y'' + y = 0, its general solution is, y(t) = A cos t + B sin t, t ≥  0 

W.L.O.G. we can assume that both constants A and B are non-zero, otherwise y(t) is trivially oscillatory. 
In that case (that is, A ≠  0, B ≠  0) the solution y(t) has a zero at  

 t = nπ  + tan –1
A
B  for all n = 0, 1, 2,…  

so this differential equation is oscillatory. 

(ii) Consider the differential equation 

  y'' – y = 0 for all t ≥  0. 

Its general solution y(t) = aet + be –t where a, b are constants and this solution is non – oscillatory. Hence 
the given example is non-oscillatory. 

2.11.9. Function Oscillate More Rapidly. Let f(t) and g(t) be two real valued and continuous functions 
defined in some closed interval [a, b]. Then the function f(t) is said to oscillate more rapidly than g(t) if 
the number of zeros of f(t) in [a, b] exceed the number of zeros of g(t) in [a, b] by more than one.  

For example, let f(t) = sin t, t ∈ [0, 4π ] and g(t) = sin 2t, t ∈ [0, 4π ]. 

Here g(t) oscillate more rapidly f(t) as the number of zeros of g are half of the number of zeros of f(t). 

2.11.10. Strum Majorant and Strum Minorant. Consider the differential equation 

  1( )d dup t
dt dt
 
 
 

 + q1(t) u = 0    (1) 

 and 2
d dup (t)
dt dt
 
 
 

 + q2(t) u = 0    (2) 

where pi(t) and qi (t) are real valued continuous functions defined on interval J, such that  

  p1(t) ≥  p2(t) and q1(t) ≤  q2(t)    (3) 
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Then the differential equation (2) is called Strum majorant for diff equation (1) on interval J and the 
differential equation (1) is known as Strum minorant for differential equation (2) on interval J. 

Note. If, in addition q1(t) < q2(t) or p1(t) > p2(t) > 0 and q2(t) ≠  0, hold at some point t of the interval J 
then the differential equation (2) is called a strict Strum majorant for differential equation (1) on interval 
J. 

2.11.11. Prufer Transformation. Consider the second order homogeneous linear differential equation  

  d dup(t)
dt dt
 
 
 

 + q(t) u = 0     (1) 

on the interval J such that the coefficients p(t) and q(t) are real valued. Let u = u(t) be a real valued 
solution of differential equation (1). In equation (1), we make the following substitution called Prufer 
substitution. 

  p(t) ( )u' t  = ρ (t) cosφ (t), u(t) = ρ (t) sinφ (t) } (2) 

 in which two dependent variables ρ  and φ  are defined by the formula  

   ρ  = 2 2( )2u p u'+  > 0 

   φ  = tan –1
u

pu'
 
 
 

     (3) 

ρ  is called the amplitude and φ  the phase variable. Here u and u' cannot vanish simultaneously (that is, 
trivial solutions, which is not possible). So ρ  > 0. 

We now derive an equivalent system of differential equation for ρ  (t) and φ (t). 

By equation (3),  

  cotφ  = pu'
u

 (Since p ≠  0)    (4) 

On differentiating w.r.t. ‘t’ we get 

 (d d utan )  =  
dt dt pu'

 
φ  

 
 ⇒  sec2φ  d

dt
φ  = 

( ) ( )

[ ]

2

2

( ) '( ) ( ) ( ) '( )

( ) '( )

dp t u t  u t p t  u t
dt

p t  u t

−
  

= 
[ ]2

1 ( ) ( ) ( )
( ) ( ) '( )

 u t q t u t
p t p t  u t

⋅
+       [By (1)] 

  = 1
( )p t

 + tan2φ ⋅q(t)       [By (3)] 

⇒  d
dt
φ  = 1

( )p t
 cos2φ  + q(t) sin2φ     (5) 
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Also,  ρ 2 = u2 + p2 (u' )2      (6) 

Differentiating equation (6), we get 

 2ρ d
dt
ρ  = 2uu'  + 2(pu' ) d

dt
(pu' ) = 2uu'  + 2(pu' ) (– qu) 

 = 2. 1
p(t)

ρ 2sinφ cosφ  + 2ρ cosφ ( –qt ρ  sinφ ) = 1 ( )
( )

q t
p t

 
− 

 
 ρ 2 sin2φ  

⇒  d
dt
ρ  = 1

2
1 ( )
( )

q t
p t

 
− 

 
ρ  sin 2φ     (7) 

The system consisting of first order differential equation (5) and (7) is equivalent to the second order 
differential equation (1). This system is called Prufer system associated with the differential equation 
(1). 

The differential equation (5) of the Prufer system is a first order differential equation in φ (t) alone and 
not containing the other dependent variableρ . If a solution φ  = φ (t) of differential equation (5) is 
known, then a corresponding solution of first order ordinary differential equation (7) is obtained by 
integration. 

Remark. Each solution of the Prufer system depend upon two constants, the initial amplitude ρ 0 = ρ (t0) 
and the initial phase φ  = φ (t0). Changing the constant ρ 0 just multiplies a solution u(x) of differential 
equation (1) by a constant factor. Thus the zeros of any non-trivial solution u = u(t) of differential 
equation (1) can be located by studying only the first order differential equation (5). 

2.11.12. Theorem. Let u1(t) and u2(t) be two linearly independent solutions of differential equation. 

  d dup(t)
dt dt
 
 
 

 + q(t) u = 0    (1) 

in [a, b] with p(t) > 0. Prove that u1(t) and u2(t) do not admit common zeros. 

Proof. Let, if possible, they have a common zero at t = t0, say, for some t0 ∈ [a, b].  

Then  u1(t0) = u2(t0) = 0 

By Abel’s lemma, we have  

  p(t) [ ]( ) ( )1 2 1 2u t  u '(t)  u '(t) u t−  = c   (2)  

for all t ∈ [a, b], where c is some constant. 

To find value of c, we put t = t0 in equation (2), and we get c = 0 [Since u1(t0) = u2(t0) = 0]. 

Using c = 0 in equation (2), we get  

 p(t) [ ]( ) ( )1 2 1 2u t  u '(t)  u '(t) u t−  = 0 for all t ∈ [a, b]  

⇒  ( ) ( )1 2 1 2u t  u '(t)  u '(t) u t−  = 0  ⇒  W(u1, u2) (t) = 0 for all t ∈ [a, b] 
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Then solutions u1(t) and u2(t) are linear dependent, which is a contradiction. 

Hence u1(t) and u2(t) cannot have common zeros. 

2.11.13. Theorem. Let u(t) be a non – trivial solution of differential equation 

  d dup(t)
dt dt
 
 
 

 + q(t) u = 0 in [a, b]    (1) 

Prove that zeros of u(t) are isolated. 

Proof. Let t = t0 be a zero of u(t) then u(t0) = 0. Since u is a non-trivial solution of differential equation 
(1) it follows that u' (t0) ≠  0. Now there are two possibilities.- 

Case(i). When u' (t0) > 0. Since the derivative of u is continuous and is positive at t = t0, it follows that 
u(t) is increasing function and it has a positive neighbourhood that is, u(t) is non-zero in some 
neighbourhood of t0. 

Case (ii). When u' (t0) < 0. In this case, u(t) is a decreasing function and it has no zero in some 
neighbourhood of t = t0. Hence the zeros of u(t) are isolated. 

2.11.14. Theorem. Let u1(t) and u2(t) be non-trivial linearly dependent solution of differential equation  

  d dup(t)
dt dt
 
 
 

 + q(t) u = 0     (1) 

on [a, b] and p(t) > 0. Then the zeros of u1(t) and u2(t) are identically same. 

Proof. Since u1(t) and u2(t) are linearly dependent on [a, b] so there exist constants c1 and c2  

(not both zero) such that  

  c1 u1(t) + c2 u2(t) = 0 for all t ∈ [a, b].    (2) 

Now, we shall prove that c1 and c2 are both non-zero. If c2 = 0, then (2) gives 

  c1u1(t) = 0 for all t ∈ [a, b] ⇒  c1 = 0 

since u(t) is non – trivial solution. This is a contradiction to the assumption that c1 and c2 are not both 
zero. So, we must have c2 ≠ 0. 

Similarly, c1 ≠  0.  

Now, let t = t0 be a zero of u1(t), then u1(t0) = 0 and equation (2) gives, 

c2u2(t0) = 0 ⇒  u2(t0) = 0 [c2 ≠ 0 ] 

⇒  t0 is also a zero of u2(t). 

Thus every zero of u1(t) is also a zero of u2(t). Similarly every zero of u2(t) is also a zero of u1(t). Hence 
u1(t) and u2(t) both have same zeros. 
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2.11.15. Example. Consider the differential equation 
2

2
d u
dt

 + u = 0 that is, p(t) ≡  1, q(t) ≡  1. 

Let u1(t) = A sin t, u2(t) = B sin t where A and B are arbitrary constants. Then u1(t) and u2(t), two non-
trivial linearly dependent solutions of the given differential equation have the common zeros at  

 t = ±  nπ , n = 0, 1, 2, … and no other zero. 

2.11.16. Theorem. Let u1(t) and u2(t) be two non-trivial solutions of differential equation  

  d dup(t) q(t)u(t) = 0
dt dt
  + 
 

 on [a, b]     (1) 

with p(t) > 0. If u1(t) and u2(t) have common zeros on [a, b], then they are linearly dependent on [a, b]. 

Proof. We know by Abel’s lemma, that  

  p(t) [u1(t) 2u '(t)  – 1u '(t)u2(t)] = c (constant)     (2) 

on [a, b]. Let t = t0 be a common zero of u1(t) and u2(t). Then u1(t0) = u2(t0) = 0 

Using these value in (2), we get c = 0.      (3) 

As p(t) > 0, equation (1) and equation (3) gives 

 u1(t) 2u '(t)  – 1u '(t)u2(t) = 0 ⇒  W(u1, u2) (t) = 0 for all t ∈ [a, b]. 

This implies that the solutions u1(t) and u2(t) are linearly dependent on [a, b]. Hence proved. 

2.11.17. Theorem. If u1(t) and u2(t) be two real valued non-trivial linearly independent solutions of 

differential equation d dup(t) q(t) u(t) = 0
dt dt
  + 
 

 on [a, b] with p(t) > 0. Then the zeros of u1(t) separate 

and are separated by those of u2(t). 

Proof. Let t = t1, t2 be two consecutive zeros of u1(t) on [a, b] so u1(t1) = u2(t2) = 0 

Since u1(t) and u2(t) are linearly independent on [a, b] so they do not admit common zeros. So, we must 
have u2(t1) ≠  0 and u2(t2) ≠  0. 

We shall now show that u2 has one zero in open interval (t1, t2). Let, if possible, that it does not happen 
that is, u2(t) has no zero in the open interval (t1, t2). 

Then the quotient function 1

2

u
u

 
 
 

 (t) satisfies all conditions of Rolle’s theorem.  

Therefore by Rolle’s theorem, there exist a point c ∈ (t1, t2) such that 

  1

2

d u
dt u
 
 
 

 (c) = 0 

⇒  
( )2

( ) '( '( (
(

1 2 1 2

2

u c  u c)  u c) u c)
u c)
−  = 0 ⇒  ( ) '( '( (1 2 1 2u c  u c)  u c) u c)−  = 0 

⇒  W(u1, u2) (c) = 0 
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which is a contradiction, because the solutions u1(t) and u2(t) are linearly independent so their 
Wronskian must be non – zero at every point of interval [a, b]. 

Hence our supposition is wrong therefore u2(t) has at least one zero in the interval (t1, t2). This proves 
that the zeros of u1(t) are separated by zeros of u2(t). Now we shall prove that u2(t) has exactly one zero 
in the open interval (t1, t2). 

Let, if possible, u2(t) has two consecutive zeros t3 < t4 in the open interval (t1, t2). 

On interchanging the roles of solutions of u1(t) and u2(t) in the above proved conjecture, we get that 
there is at least one zero, say t = t5, of the solution u1(t) in the open interval (t3, t4) ⊂  (t1, t2). This is a 
contradiction to the assumption that t3 and t4 are two consecutive zeros. 

2.11.18. Sturm Fundamental Comparison Theorem. Consider the differential equations  

  1
d dup(t) q (t)u = 0
dt dt
  + 
 

      (1) 

 and 2
d dup(t) q (t)u = 0
dt dt
  + 
 

     (2) 

on the interval [a, b] such that p(t) > 0 have a continuous derivative on [a, b] and q1(t) < q2(t) be 
continuous on [a, b]. Let u1(t) and u2(t) be non – trivial solutions of equation (1) and equation (2) 
respectively. Prove that between any two consecutive zeros of u1(t) on [a, b], there lies at least one zero 
of u2(t). 

Proof. Let t1 < t2 be two consecutive zeros of u1(t) on [a, b]. Then by hypothesis, we have  

  u1(t1) = u2(t2) = 0 

Now u1(t) and u2(t) are solutions of (1) and (2) respectively, so 

  1
1 1

d dup(t) q (t) u (t) = 0
dt dt
  + 
 

     (3) 

for all t ∈ [a, b] 

and  2
2 2

d dup(t) q (t) u (t) = 0
dt dt
  + 
 

     (4) 

Multiplying equation (3) by u2(t) and equation (4) by u1(t) and subtracting, we get 

 u2(t) 1
1 1

d dup(t) q (t) u (t)
dt dt
   +    

 – u1(t) 2
2 2

d dup(t) q (t) u (t)
dt dt
   +    

 = 0 

⇒  ( )'( ) ( ) ( ) '( )1 2 1 2
d p(t) u t  u t u t  u t
dt
 −   + q1(t) u1(t) u2(t) – q2(t) u1(t) u2(t) = 0 

⇒  ( )( ) ( ) ( ) ( )' '
1 2 1 2

d p(t) u t  u t u t  u t
dt
 −   = [q2 (t) – q1 (t)] u1(t) u2(t) (6) 

Integrating both sides w.r.t. ‘t’ over [t1, t2],] 
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{ }'( ( ) '( 2

1

t
1 2 1 2 t

p(t) u t)u t u (t)u t) −   = ( )( ) ( ) ( (
2

1

t

2 1 1 2
t

q t q t  u t) u t) dt−∫  

Now using u1(t1) = u2(t2) = 0 in L.H.S. of above, we get 

      p(t2) 1 2u '(t ) u2(t2) – p(t1) 1 1u '(t )u2(t1) = ( )( ) ( ) ( (
2

1

t

2 1 1 2
t

q t q t  u t) u t) dt−∫   (7) 

Let, if possible, we assume that u2(t) does not have any zero in the open interval (t1, t2). 

Then W.L.O.G., we can assume that  u1(t) > 0 and u2(t) > 0 in (t1, t2). 

Since u1(t2) = 0 and u1(t) = 0 for all t in (t1, t2), therefore we have 1 2u '(t )  < 0.  (8) 

Since u2(t) > 0 on (t1, t2), therefore u2(t2) ≥  0.      (9) 

Also by hypothesis p(t2) > 0.        (10) 

By (8), (9) and (10), we get 

 p(t2) 1 2u '(t ) u2(t2) ≤  0        (11) 

Similarly, we can show that 

 p(t1) 1 1u '(t )u2(t1) ≥  0        (12) 

By (11) and (12), we have that L.H.S. of equation (7) is not positive that is, 

 p(t2) 1 2u '(t ) u2(t2) – p(t1) 1 1u '(t )u2(t1)  ≤  0 

⇒  ( )( ) ( ) ( (
2

1

t

2 1 1 2
t

q t q t  u t) u t) dt−∫  ≤  0      (13) 

But by hypothesis, q2(t) – q1(t) > 0 on (t1, t2) and also u1(t) > 0, u2(t) > 0 on (t1, t2). 

So we must have, 

 ( )( ) ( ) ( (
2

1

t

2 1 1 2
t

q t q t  u t) u t)−∫  > 0      (14) 

which is a contradiction, as (13) and (14) contradict each other. 

Hence u2(t) must have a zero between two consecutive zeros of u1(t). 

This completes the proof. 

2.11.19. Example. Verify the Sturm’s fundamental comparison theorem in the case of real solutions of 
the differential equations 
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2

2
d u
dt

+A2u = 0      (1) 

 and 
2

2
d u
dt

+B2u = 0      (2) 

where A and B are constants such that B > A > 0. 

Solution. Let u1(t) = sin At and u2(t) = sin Bt. Then u1(t) and u2(t) are real solutions of differential 
equations (1) and (2) respectively. 

Consecutive zeros of u1(t) are  

  n
A
π , (n+1)

A
π  for n = 0, ± 1, ± 2, … 

By Sturm’s comparison theorem (with p(t) ≡1, q1(t) = A2, q2(t) = B2, q2 > q1) the solution u2(t) of 

differential equation (2) has at least one zero, say, nξ , between the zeros n
A
π  and (n+1)

A
π  of u1(t) that is, 

 n
A
π  < nξ  (n+1)

A
π , n = 0, ± 1, ± 2,… 

We may take nξ  = (n+1)
B

π  as zero of u2(t). 

In particular for n = 0 

 t1 = 0, t2 = 
A
π  are two consecutive zeros of u1(t). The zero t = 

B
π  of u2(t) lies between t1 and t2 as 

0 < 
B
π  < 

A
π  [Since B > A > 0]. Hence the verification. 

2.11.20. Theorem. Consider the differential equations 

  1
d dup(t) q (t)u = 0
dt dt
 + 
 

     (1) 

  2
d dvp(t) q (t)v = 0
dt dt
 + 
 

     (2) 

where p(t) > 0, q2(t) > q1(t) on a ≤  t ≤  b. Further more either  

 (i) u'(a)
u(a)

 ≥  v'(a)
v(a)

, u(a) ≠  0, v(a) ≠  0 

or  (ii) u(a) = 0, v(a) = 0 

Then v(t) has atleast as many zeros in [a, b] as u(t). In case (i), if the zeros of u(t) are t1, t2,…, tn with a < 
t1 < t2 <…< tn ≤  b and the zeros of v(t) are 1 2, ,..., mξ ξ ξ  with 1 2 ... ma bξ ξ ξ< < < < ≤  then prove that 

k k < tξ . 
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Proof. By the fundamental comparison theorem, we know that, “Between any two zeros of u(t), there is 
at least one zero of v(t)”. 

Thus, v(t) has atleast n – 1 zeros in [a, b]. It is sufficient to show that v(t) has a zero lying in the interval 
[a, t1]. In case (ii), this is obvious as t = a is also a zero of v(t). In case (i), we assume without loss of 
generality that u(t) > 0 and v(t) > 0 in open interval (a, t1). 

Multiplying equation (1) by v(t), (2) by u(t) and subtracting, we get 

 ( )d p(t) u'(t) v(t)  u(t) v'(t)
dt
 −   = ( )( ) ( )2 1q t q t−  u(t) v(t) 

Integrating both sides over (a, t1), we get 

 { } 1t

a
p(t) u'(t) v(t)  u(t) v'(t) −   = ( )( (

1t

2 1
a

q t) q t)  u(t) v(t) dt−∫     (*) 

L.H.S. of (*) = p(t1) u' (t1)v(t1) – p(a) [ ]u'(a)v(a) u(a) v'(a)−  [Since u(t1) = 0] 

  = ) ) .1 1
u'(a) v(a) u(a) v'(a)p(t u'(t v(t)  p(a) u(a)v(a)

u(a) v(a)
 −

−  
 

 

  = p(t1) u' (t1)v(t1) – p(a) u'(a) v'(a)
u(a) v(a)

 
− 

 
u(a) v(a) ≤  0   (3) 

) 0, ) 0, ) 01 1 1
u'(a) v'(a)Since   , p(a) 0 , p(t   u'(t v(t  , u(a) > 0 , v(a) > 0
u(a) v(a)

 
≥ ≥ ≥ < > 

 
 

But R.H.S. of (*) = ( )( (
1t

2 1
a

q t) q t)  u(t) v(t) dt−∫  > 0       (4) 

which is contradiction to (*) since (3) and (4) contradicting each other. Hence v(t) must have a zero 
lying in the interval (a, t1). 

2.12. Check Your Progress. 

1. Consider the differential equation 

  1
d dup(t) q (t)u = 0
dt dt
 + 
 

      (1) 

  2
d dvp(t) q (t)v = 0
dt dt
 + 
 

      (2) 

where p(t) > 0, q2(t) > q1(t) on [a, b]. Further let either  

 (i) u'(a)
u(a)

 ≥  v'(a)
v(a)

, u(a) ≠  0, v(a) ≠  0 

or  (ii) u(a) = 0, v(a) = 0 
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Suppose that u(t) and v(t) have the same number of zeros in [a, b]. Then show that  

  u'(b)
u(b)

 > v'(b)
v(b)

 if u(b) ≠  0. 

Answer. 

Since u(b) ≠  0 and v(t) has as many zeros in [a, b] as u(t), it follows that v(b) ≠  0, since, in this case, tn 
< b and v(t) has atleast as many zeros as u(t) in [a, b] by virtue of Sturm comparison theorem. 
Multiplying equation (1) by v(t) and (2) by u(t), subtracting and then integrating over (tn, b), we get 

 { }
n

b

t
p(t) u'(t) v(t)  u(t) v'(t) −   = ( )( (

n

b

2 1
t

q t) q t)  u(t) v(t) dt−∫     (3) 

W.L.O.G. We may assume that u(t) > 0, v(t) > 0 in [tn, b] 

Then,    ( )( (
n

b

2 1
t

q t) q t)  u(t) v(t) dt−∫  > 0    (4) 

By (3) and (4), we get { }
n

b

t
p(t) u'(t) v(t)  u(t) v'(t) −   > 0 

⇒  p(b) u' (b)v(b) – p(b) u(b) v' (b) – p(tn) u' (tn) v(tn) + p(tn) u(tn) v' (tn) > 0 

⇒  p(b)[ ] ) ) )n n nu'(b)v(b) u(b)v'(b)  > p(t  u'(t  v(t−  [u(tn) = 0] 

But p(tn) u' (tn) v(tn) > 0 [Since p(tn) > 0, v(tn) > 0, v(tn) > 0, u' (tn) > 0] 

Therefore, u' (b) v(b) – u(b) v' (b) > 0 ⇒  u'(b)
u(b)

 > v'(b)
v(b)

. 

2.13. Summary. 

In this chapter, we discussed various properties of solutions of linear homogeneous systems. Also, by 
using the fundamental matrix of a linear homogeneous system we can obtain a solution of linear non-
homogeneous system. 
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Autonomous System 

Structure 

3.1. Introduction. 

3.2. Autonomous System. 

3.3. Critical point. 

3.4. Types of critical points.  

3.5. Stability. 

3.6. Critical points and paths of nonlinear systems. 

3.7. Check Your Progress. 

3.8. Summary. 

3.1. Introduction. This chapter includes the results related to autonomous system, critical points, paths 
approaching and entering a critical point. The behavior of a path at a critical point is of great interest of 
study.  

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Stability and asymptotic stability of a critical point. 

(ii) Various types of critical points. 

(iii) Almost linear syetems. 

3.1.2. Keywords. Critical Point, Node, Saddle Point, Center, Spiral Point, Characteristic Equation. 
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3.2. Autonomous System. Consider the system  

  dx
dt

 = F (x, y)  dy
dt

 = G (x, y)  (1) 

where F and G are continuous and have continuous first partial derivative throughout the xy plane. A 
system of this kind in which the independent variable t does not appear in the function F and G is called 
an autonomous system. 

3.2.1. Example. Consider the second order differential equation 

  
2

2
d x
dt

 = f , dxx 
dt

 
 
 

    (2) 

If we imagine a simple dynamical system consisting of a particle of unit mass (m = 1) moving on the t – 

axis and if f , dxx 
dt

 
 
 

 is the force acting on it, then equation (2) is the equation of motion. 

The values of x (position) and dx
dt

 (velocity), which at each instant characterize the state of the system, 

are called its phases. The plane of the variables x and dx
dt

 is called the phase plane. 

If we introduce the variable  

y = dx
dt

      (3) 

then the second order differential equation (2) is equivalent to the following system 

  dx
dt

 = y dy
dt

 = f (x, y)    (4) 

which is an autonomous system. 

3.2.2. Solution and path of an autonomous system. Consider the autonomous system  

  dx
dt

 = F (x, y)  dy
dt

 = G (x, y)  (1) 

By a theorem of system of differential equations, we have that for any given real number t0 and any pair 
(x0, y0) of real numbers, there exists a unique solution  

x = x(t), y = y(t)    (2) 

of the system (1) such that x(t0) = x0 and y(t0) = y0 . If x(t) and y(t) are not both constant functions, then 
system (2) represents a curve in xy - plane which is called path (or orbit or trajectory) of the system (1).  

If the ordered pair of functions defined by (2) is a solution of (1) and t, is any real number, then it is easy 
to see that the ordered pair of functions defined by 

   x = x(t – t1), y = y (t – t1)  (3) 



66 Autonomous System 

 

is also solution of (1). Assuming that x and y in (2) are not both constant functions and t1 ≠  0, the 
solutions defined by (2) and (3) are two different solutions of (1). However, these two different solutions 
are simply the different parameterizations of the same path i.e. shifting of the origin from t = 0 to t = t1. 
We thus observe that the terms solution and path are not synonymous. On the one hand, a solution of (1) 
is an ordered pair of functions (x, y) such that x = x(t), y = y(t) simultaneously satisfy the two equations 
of the system (1) identically ; on the other hand a path of (1) is a curve in the xy – phase plane, which 
may be defined parametrically by more than one solution of (1). 

A path is a directed curve. The direction of increasing t along a given path is same for all solutions 
representing the path in our figure. We shall use arrows to indicate the direction in which path is traced 
out as t increases. 

3.3. Critical point. Given the autonomous system 

  dx
dt

 = F (x, y) and dy
dt

 = G (x, y)  (1) 

a point (x0, y0) at which both F(x0, y0) = 0 and G(x0, y0) = 0 is called a critical point of (1). 

A critical point is also called equilibrium point or singular point. 

3.3.1. Example. Consider the linear autonomous system 

dx
dt

 = y , dy
dt

 = – x   (1) 

The general solution of this system may be put as  

 x = c1 sint – c2 cost , y = c1 cost + c2 sint 

where c1 and c2 are arbitrary constants. The solution satisfying x(0) = 0 and y(0) = 1 is clearly 

  x = sint, y = cost    (2) 

This solution defines a path C1 in the xy – plane. The solution satisfying the condition x(0) = –1 and y(0) 
= 0 is clearly 

  x = sin 
2

t π − 
 

,  y = cos 
2

t π − 
 

 (3) 

The solution (3) is different from the solution (2), but (3) also defines the same path C1. That is, the 
ordered pair of functions defined by (2) and (3) are two different solutions of (1) which are different 
parameterizations of the same path C1. Eliminating t from either (2) or (3) we obtain the equation  
x2 + y2 = 1 of the path C1 in the xy, phase plane. Thus the path C1 is the circle with centre at (0, 0) and 
radius 1.From either (2) or (3) we see that the direction associated with C1 is the clockwise direction. 
Eliminating t between the equations of system (1) we obtain the differential equation 

dy
dx

 = x
y

−    (4) 
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0 

 y 

 x 
 1  2  3 

which gives the slope of the tangent to the path of 
(1) passing through the point (x, y), provided 

(x, y) ≠  (0, 0). The one parameter family of 
solutions x2 + y2 = c2 of equation (4)  gives the one 
– parameter family of paths  in the xy phase plane. 
Several of these are shown in the figure below. 
The path C1 referred above is, of course, that for 
which c = 1. 

By equation (1), i.e. comparing with dx
dt

 = F (x, y) 

dy
dt

 = G (x, y) 

We see that F (x, y) = y and G (x, y) = –x. Therefore the only critical point of the system is the origin (0, 
0). Given any real number t0, the solution x = x(t), y = y(t) such that x(t0) = 0 = y(t0) is simply x = 0, y = 
0, for all t. 

3.3.2. Isolated critical point. A critical point (x0, y0) of the autonomous system 

  dx
dt

 = F (x, y) dy
dt

 = G (x, y)    (1) 

is called an isolated critical point if there exist a circle (x−x0)2 + (y−y0)2 = r2 about the point (x0, y0) 
such that (x0, y0) is the only critical point of (1) within this circle. 

Note. For convenience, we shall take the critical point (x0, y0) to be the origin (0, 0). There is no loss in 
generality in doing so, for if (x0, y0) ≠ (0, 0), then the translation of coordinates  

 ξ  = x – x0, η  = y – y0 

transforms (x0, y0) into the origin in ξ η  plane. 

3.3.3. Path Approaching Critical Point. Let x = x(t), y = y(t) is a solution which parametrically 

represents the path C, and let (0, 0) be a critical point of the autonomous system dx
dt

 = F (x, y) dy
dt

 = G 

(x, y).  

Then we say that the path C approaches the critical point (0, 0) as t→∞  if  

  lim
t→∞

 x(t) = 0 and lim
t→∞

 y(t) = 0. 

In like manner, a path C1 approaches the critical point (0, 0) as t -→ ∞  if  

  lim
t→−∞

 x1 (t) = 0 and lim
t→−∞

 y1 (t) = 0 

where x = x1(t) and y = y1 (t) is a solution defining the path C1. 
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3.3.4. Path Entering Critical Point. Let x = x(t) and y = y(t) be a solution which parametrically 

represents the path C and let (0, 0) be the critical point of the autonomous system dx
dt

 = F (x, y), dy
dt

 = G 

(x, y) to which C approaches as t→∞ . Then we say that C enters the critical point (0, 0), as t →∞  if 

lim
t→∞

 ( )
( )

y t
x t

 exists or if this quotient becomes either positively or negatively infinite as t →∞ . 

We observe that the quotient ( )
( )

y t
x t

 represents the slope of the line joining critical point (0, 0) and a point 

R with coordinates (x(t), y(t)) on C. Thus when we say that a path C enters the critical point (0, 0) as 
t→∞  we mean that the line joining (0, 0) and a point R tracing out C approaches a definite ‘limiting’ 
direction as t→∞ . 

3.4. Types of critical points.  

3.4.1. Center. The isolated critical point (0, 0) of autonomous system is called a center if there exists a 
neighbourhood of (0, 0) which contains a countably infinite number of closed path Cn (n = 1, 2, …), 
each of which contains (0, 0) in its interior, and which are such that the diameters of the paths approach 
0 as n→∞ , but (0, 0) is not approached by any path either as t→∞ or as t→−∞ . 

 

 

 

 

 

       

 

The critical point (0, 0) of adjoining figure is called a center. Such a point is surrounded by an infinite 
family of closed paths, members of which are arbitrarily close to (0, 0), but it is not approached by any 
path either as t→∞  or as t→−∞ . 

3.4.2.. Saddle Point. The isolated critical point (0, 0) is called a saddle point if there exist a 
neighbourhood of (0, 0) in which the following two conditions hold. 

(i) There exist two paths which approach and enter (0, 0) from a pair of opposite directions as t→∞ , 
and there exist two paths which approach and enter (0, 0) from a different pair of opposite directions as  
t→−∞ . 

(ii) In each of the four domains between any two of the four directions in (i) there are infinitely many 
paths which are arbitrarily close to (0, 0) but which do not approach (0, 0) either as t→∞  or as  t→−∞ . 

The critical point (0, 0) of adjoining figure is a saddle point which is such that  

 

 y 

0 
 x 
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(i) It is approached and entered by two half-line paths (A0 and B0) as t→+∞ , these two paths forming 
the geometric curve AB. 

(ii) It is approached and entered by two half – line path (C0 and D0) as t→−∞ , these two paths forming 
the geometric curve CD. 

(iii) Between the four half – line paths described in (i) and (ii) there are four domains R1, R3, R3, R4, 
each containing an infinite family of semi – hyperbolic like paths which do not approach (0, 0) as 
t→+∞  or as t→−∞ , but which become asymptotic to one or another of the four half – line paths as 
t→∞  and as t→−∞ . 

3.4.3.. Focal point/Spiral point. The isolated critical point (0, 0) is called a spiral point (or focal point) 
if there exists a neighbourhood of (0, 0) such that every path C in this neighbourhood has the following 
properties. 

(i)  C is defined for all t > t0 (or for all t < t0 ) for some number t0. 

(ii) C approaches (0, 0) as t→+∞  (or as t→−∞ ). 

(iii) C approaches (0, 0) in a spiral – like manner, winding around (0, 0) an infinite number of times 
as t →+∞  (or as t→−∞ ). 

 

 

 x 

 y 
 D  R2 

 R3 

 A  R4 
 C 

 R1 O 

B 
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The critical point (0, 0) in the above figure is a spiral point (or focal point). This point is approached in a 
spiral – like manner by an infinite family of paths as t→∞  (or as t→−∞ ). Here, while the paths 
approach (0, 0), they do not enter it. That is a point R tracing such a path C approaches O (0, 0) as t→∞  
(or as t→−∞ ), but the line or does not tend to a definite direction, since the path constantly winds about 
O. 

3.4.4. Node. The isolated critical point (0, 0) is called a node if there exist a neighbourhood of (0, 0) 
such that every path C in this neighbourhood has the following properties. 

(i) C is defined for all t > t0 (or for all t < t0) for some number t0. 

(ii) C approaches (0, 0) as t→+∞  (or as t→−∞ ). 

(iii) C enters (0, 0) as t→+∞  [or as t→−∞ ]. 

The critical point (0, 0) in the above figure is a node. This 
point is not only approached but also entered by an infinite 
family of paths as t→∞  (or as t→−∞ ). That is, a point R 
tracing such a path not only approaches O but does so in such 
a way that the line OR tends to a definite direction as t→+∞  
(or as t→−∞ ). In above figure, there are four rectilinear 
paths AO, BO, CO and DO. All other paths are like 
“semiparabolas” As each of these semiparabolic – like paths 
approaches O, its slope approaches that of the line AB. 

3.5. Stability. Let (0, 0) is an isolated critical point of the 
autonomous system 

  dx
dt

 = F (x, y), dy
dt

 = G (x, y)   (1) 

Let C be a path of (1) and let x = x(t), y = y(t) be a solution of (1) defining C parametrically. Let 

  D(t) = 2 2[ ] [ ]x(t) y(t)+    (2) 

denote the distance between the critical point (0, 0) and the point R. (x(t), y(t)) on C. The critical point 
(0, 0) is called stable if for every number ε  > 0, there exists a number δ  > 0 such that the following is 
true. Every path C for which  

  D(t0) < δ  for some t0    (3) 

is defined for all t ≥  t0 and is such that  

  D(t) < ε  for t0 ≤  t < ∞    (4) 

3.5.1. Analysis of the definition. According to (2), the inequality D(t0) < δ  for some value t0 in (3), 
means that the distance between the critical point (0, 0) and the point R on the path C must be less than 
δ  at t = t0. This means that at t = t0, R lies within the circle K1 of radius δ  about (0, 0). Similarly the 
inequality D(t) < ε  for t0 ≤  t < ∞  in (4) means that the distance between (0, 0) and R is less than ε  for 
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all t ≥  t0, and hence that for t ≥  t0, R lies within the circle K2 of radius ε about (0, 0). Now if (0, 0) is 
stable, then every path C which is inside the circle K1 of radius δ  at t = t0 will remain inside the circle 
K2 of radius t≥ t0. 

 
3.5.2. Asymptotic Stability. Let (0, 0) is an isolated critical point of the system  

  dx
dt

 = F (x, y), dy
dt

 = G (x, y)    (1) 

Let C be a path of (1) and let x = x(t), y = y(t) be a solution of (1) representing C parametrically. Let 

  D(t) = 2 2[ ] [ ]x(t) y(t)+     (2) 

denote the distance between the critical point (0, 0) and the point R. (x(t), y(t)) on C. The critical point 
(0, 0) is called asymptotically stable if  

(i) It is stable and  

(ii) There exist a number δ 0 > 0 such that if  

  D(t0) < δ 0      (3) 

for some value t0, then  

  lim
t→∞

 x(t) = 0, lim
t→∞

 y(t) = 0    (4) 

3.5.3. Unstable Critical Point. A critical point is called unstable if it not stable. 

Remark. According to definitions, centre, spiral point and node are stable. Out of these three, the spiral 
point and the node are asymptotically stable. If the directions of the paths in the figures of spiral point 
and node are reversed, then they become unstable. Saddle point is unstable. 

3.5.4. Critical points and paths of linear systems. We consider the linear system  

  dx
dt

 = ax + by  

  dy
dt

 = cx + dy   (1) 
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where a, b, c . d are real constants. We attempt to determine a solution of the form 

  x = A teλ  

  y = B teλ     (2) 

where A, B and λ  are constants.  

If we put (2) in (1), then 

  Aλ teλ  = aA teλ  + bB teλ  

  Bλ teλ  = cA teλ  + dB teλ  

which gives 

 (a –λ )A + bB = 0 

 a A + (b –λ ) B = 0   (3) 

This system obviously has the trivial solution A = B = 0. But this would give only the trivial solution x = 
0, y = 0 of the system (1). Thus we seek non – trivial solution of the system (3). A necessary and 
sufficient condition that this system have a non-trivial solution is that the determinant 

   
a b

a d
−λ

−λ
 = 0  (4) 

This gives the quadratic equation 

  λ 2 – (a + d) λ  + (ad – bc) = 0 (5) 

This equation is called the characteristic equation associated with the system (1). Its roots λ 1 and λ 2 are 
called the characteristic roots. 

If the pair (2) is to be a solution of the system (1), then λ  in (2) must be one of these roots. 

Result. If λ 1 and λ 2 are roots of characteristic equation (5) then the general solution of the system (1) 
may be written as  

  x = c1 A1 1 teλ  + c2 A2 2teλ  

  y = c1 B1 1 teλ  + c2 B2 2teλ  

where A1, B1, A2 and B2 are definite constants and c1, c2 arbitrary constants. 

Remark. Let λ 1 and λ 2 be the roots of the characteristic equation (5). We shall prove that the nature of 
the critical point (0, 0) of the system (1) depends upon the nature of roots λ 1 and λ 2. 

3.5.5. Theorem. Consider the linear system 

  dx
dt

 = ax + by  

  dy
dt

 = cx + dy     (1) 
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where 
a b
c d

 = ad – bc ≠  0, so that (0, 0) is the only critical point of the system. The roots λ 1 and λ 2 

of the characteristic equation λ 2 – (a + d) λ  + (ad – bc) = 0 are real, unequal and of the same sign. Then 
the critical point (0, 0) of the linear system (1) is a node. 

Proof. We first assume that λ 1 and λ 2 are both negative and take λ 1 <λ 2 < 0. We know that the 
general solution of the system (1) may then be written  

  x = c1 A1 1 teλ  + c2 A2 2teλ  

  y = c1 B1 1 teλ  + c2 B2 2teλ     (2) 

where A1, B1, A2 and B2 are definite constants and A1 B2 ≠  A2 B1 and where c1 and c2 are arbitrary 
constants.  

Choosing c2 = 0 we obtain the solutions 

  x = c1 A1 1 teλ   

  y = c1 B1 1 teλ        (3) 

Choosing c1 = 0, we obtain the solutions   

  x = c2 A2 2 teλ  

  y = c2 B2 2 teλ        (4) 

For any c1 > 0, the solutions (3) represent a path consisting of “half” of the line B1 x = A1 y of slope 
1 1B A . For any c1 < 0, they represent a path consisting of the “other half” of this line. Since λ 1 < 0, 

both of these half – line paths approach (0, 0) as t→∞ . Also since y x  = 1 1B A , these two paths enter 

(0, 0) with slope 1 1B A . 

Similarly, for any c2 > 0 the solutions (4) represent a path consisting of half of the line B2x = A2y ; while 
for any c2 < 0, the path so represented consists of the other half of this line. These two half-line paths 
also approach (0, 0) as t→+∞  and enter it with slope 2 2B A . 

Thus the solutions (3) and (4) provide us with four half – line paths which all approach and enter (0, 0) 
as t→+∞ .  

If C1 ≠  0 and C2 ≠  0 the general solution (2), represents non – rectilinear paths.  

Again, since λ 1 <λ 2 < 0,  

all of these paths approach (0, 0) as t→+∞ . Further  

  1 2

1 2

 1  2

 1  1

t t
1 2

t t
1 2

y c B e c B e = 
x c A e c A e

λ λ

λ λ

+
+

 = ( ) ( )

( ) ( )

2

2

 1  

 1  

 t
1 1 2 2

 t
1 1 2 2

c B c  e B
c A c  e A

λ −λ

λ −λ

+

+
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Therefore, 
lim 2

2

By   =  
t x A→∞

 and so all of these paths enter (0, 0) with limiting slope 2 2B A . Thus all the 

paths rectilinear as well as non – rectilinear enter (0, 0) as t→+∞ , and all except the two rectilinear 
paths defined by (3) enter with slope 2 2B A . According to the definition the critical point (0, 0) is a 
node. Clearly it is asymptotically stable. A qualitative diagram is given in the below figure. 

 
If now λ 1 and λ 2 are both positive and we take λ 1 >λ 2 > 0, we see that the general solution of (1) is 
still of the form (2) and particular solutions of the forms (3) and (4) still exist. The case is the same as 
before, except all the paths approach and enter (0, 0) as t→−∞ . The qualitative diagram of above figure 
is unchanged except that all the arrows now point in the opposite directions. The critical point (0, 0) is 
still a node, but in this case, it is clear that it is unstable. 

3.5.6. Theorem. Consider the linear system  

   dx
dt

 = ax + by  

   dy
dt

 = cx + dy      (1) 

where 
a b
c d

 ≠  0, so that (0, 0) is the only critical point of the system. The roots λ 1 and λ 2 of the 

characteristic equation λ 2 – (a + d) λ  + (ad – bc) = 0 are real, unequal and of opposite sign. Then the 
critical point (0, 0) of the linear system (1) is a saddle point. 

Proof. We assume that λ 1 < 0 < λ 2 . The general solution of (1) may be written as  

   x = c1 A1 1 teλ  + c2 A2 2 teλ  

   y = c1 B1 1 teλ  + c2 B2 2 teλ      (2) 
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where A1, B1, A2 and B2 are definite constants and A1 B2 ≠  A2 B1 and where c1 and c2 are arbitrary 
constants.  

Choosing c2 = 0, we obtain the solutions 

   x = c1 A1 1 teλ   

   y = c1 B1 1 teλ        (3) 

Choosing c1 = 0, we obtain the solutions 

   x = c2 A2 2 teλ  

   y = c2 B2 2 teλ       (4) 

For any c1 > 0, the solutions (3) represent a path consisting of half of the line B1x = A1y of slope 1 1B A . 
For any c1 < 0, they represent a path consisting of the other half of this line. Since λ 1 < 0, both of these 
half – line paths approach (0, 0) as t→∞ . Similarly, for any c2 > 0 the solutions (4) represent a path 
consisting of half of line B2x = A2y, while for any c2 < 0, the path so represented consists of the other 
half of this line. But in this case, since λ 2 > 0, both of these half – line paths now approach and enter (0, 
0) as t→−∞ . 

If c1 ≠  0 and c2 ≠  0, the general solution (2) represents non – rectilinear paths. Here since λ 1 < 0 <λ 2, 
none of these paths can approach (0, 0) as t→+∞  or as t→−∞ . Further, none of them pass through (0, 
0) for any t0 such that  − ∞  < t0 < ∞ . As t→∞ , we see from (2) that each of these non–rectilinear paths 
becomes asymptotic to one of the half – line paths defined by (4). As t→−∞ , each of them becomes 
asymptotic to one of the paths defined by (3). 

Thus there are two half – line paths which approach and enter (0, 0) as t→∞  and two other half – line 
paths which approach and enter (0, 0) as t→−∞ . All other paths are non – rectilinear paths which do not 
approach (0, 0) as t  →+ ∞  or as t→−∞  but which become asymptotic to one or another of the four half 
– line paths as t  →+ ∞ , and as t→−∞ . Hence, the critical point (0, 0) is saddle point according to the 
definition. Clearly, it is unstable. A qualitative diagram is given below,  

 
3.5.7. Theorem. Consider the linear system 

   dx
dt

 = ax + by  

   dy
dt

 = cx + dy      (1) 
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where 
a b
c d

 ≠  0, so that (0, 0) is the only critical point of the system. The roots λ 1 and λ 2 of the 

characteristic equation  

  λ 2 – (a + d) λ  + (ad – bc) = 0     (2) 

are real and equal. Then the critical point (0, 0) of the linear system (1) is a node. 

Proof. We first assume that λ 1 = λ 2 = λ  < 0. We consider two sub cases:  

(i) a = d ≠  0 and b = c = 0 

(ii) All other possibilities which gives a double root. We consider first the sub case – (i). 

The characteristic equation (2) becomes 

  λ 2 – 2aλ  + a2 = 0 

and hence λ  = a = d. The system (1) is now dx
dt

 = λ x, dy
dt

 = λ y 

The general solution of this system is clearly   

    x = c1
 teλ    

    y = c2
 teλ      (3) 

where c1 and c2 are arbitrary constants. The paths defined by (3) for the various values of c1 and c2 are 
half – lines of all possible slopes. Since λ  < 0, we see that each of these half – lines approaches and 
enters (0, 0) as t  →+ ∞ . That is, all the paths of the system enter (0, 0) as t  →+ ∞ . Hence the critical 
point (0, 0) is a node by definition. Clearly, it is asymptotically stable. A qualitative diagram of the path 
appears in the figure below. 

 
If λ  > 0, the situation is same except that the path enter (0, 0) as t →−∞ , the node (0, 0) is unstable and 
the arrows in the above figure are all reversed. 

This type of node is sometimes called star – shaped node.  
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Now we consider the sub case (ii). Here the characteristic equation has the double root λ  < 0, but 
excluding the special circumstances of (i). 

Then, we know that the general solution of system (1) may be written as 

   x = c1 A  teλ  + c2 (A1t + A2)  teλ  

   y = c1 B  teλ  + c2 (B1t + B2)  teλ     (3) 

where A’s and B’s are definite constants, c1 and c2 are arbitrary constants and 1 1B A  = B A . 

choosing C2 = 0 in (3), we obtain  

   x = c1 A  teλ   

   y = c1 B  teλ        (4) 

For any c1 > 0, the solutions (4) represent a path consisting of half of the line Bx = Ay of slope B A  and 
for any c1 < 0, they represent a path which consist of the other half of this line. Since λ  < 0, both of 
these halves – line paths approach (0, 0) as t  →+ ∞ . Further since y x   =  B A , both paths enter (0, 0) 
with slope B A . 

If c2 ≠  0, the general solution (3) represents non-rectilinear paths. Since λ  < 0, we see from (3) that 

   lim
→∞t

 x(t) = 0, lim
→∞t

 y(t) = 0 

Thus the non – rectilinear paths defined by (3) all approach (0, 0) as t  →+ ∞ . Also  

  1 2

1 2

 

 

t t
1 2

t t
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y c Be c (B t+ B )e = 
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So we, have lim
→ +∞t

y 
x

 = 
1

1B
A

 = B
A

. 

Thus all the non – rectilinear paths enter (0, 0) with limiting slope B A . 

Thus all the paths (both rectilinear and non – rectilinear) enter (0, 0) as t  →+ ∞  with slope B A . Hence 
the critical point (0, 0) is a node. Clearly it is asymptotically stable. A qualitative diagram is below. 
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If λ  > 0, the situation is same except the path enters (0, 0) as t  →− ∞ , the node (0, 0) is unstable and 
arrows in this figure are reversed. 

3.5.8. Theorem. Consider the linear system    

    dx
dt

 = ax + by  

    dy
dt

 = cx + dy     (1) 

where 
a b
c d

 ≠  0, so that (0, 0) is the only critical point of the system. The roots λ 1 and λ 2 of the 

characteristic equation λ 2 – (a + d) λ  + (ad – bc) = 0 are conjugate complex with real part non-zero i.e. 
not purely imaginary. Then the critical point (0, 0) of the linear system (1) is a spiral point. 

Proof. Since λ 1 and λ 2 are conjugate complex with real part not zero, we write these roots iα ± β , 
where α  and β  are both real and unequal to zero. Then we know that the general solution of the system 
(1) may be written as  

 x = ( ) ( )cos sin cos sint
1 1 2 2 2 1e c A t A t c A t + A tα  β − β + β β   

 y = ( ) ( )cos sin cos sint
1 1 2 2 2 1e c B t B t c B t + B tα  β − β + β β      (2) 

where  A1, A2, B1 and B2 are definite real constants and c1 and c2 are arbitrary constants.  

Let us first assume that α  < 0. Then from (2), we get 

  lim
→∞t

 x(t) = 0 and lim
→∞t

 y(t) = 0 

and hence all the paths defined by (2) approach (0, 0) as t→∞ . We may also write (2) as  

  x = ( )cos sint
3 4e c t + c tα β β  

  y = ( )cos sint
5 6e c t + c tα β β          (3) 

where   c3 = c1A1 + c2A2, c4 = c2A1 – c1A2 

  c5 = c1B1 + c2B2, c6 = c2B1 – c1B2 

Assuming c1 and c2 are real, these solutions (3) represent all paths in the real xy – plane. These solutions 
can be put in the form 

  x = ( )cost
1 1K e t +α β φ  

  y = ( )cost
2 2K e t +α β φ       (4) 

where K1 = 2 2
3 4c c+ , K2 = 2 2

5 6c c+  and φ 1, φ 2 are defined by the equations 
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  cosφ 1 = 3

1

c
K

  cosφ 2 = 5

2

c
K

 

  sinφ 1 = 4

1

c
K

−  sinφ 2 = 6

2

c
K

−  

Now we consider  

  2

1

 t
2

 t
1

y K e cos ( t+ ) = 
x K e cos ( t+ )

α

α

β φ
β φ

      (5) 

Letting K = 2 1K K  and φ 3 = φ 1 – φ 2, this becomes  

 1 3

1

cos ( )
cos ( )

β + φ −φ
=

β + φ
y K  t    
x  t  

 = 1 3 1 3

1

cos ( ) cos sin( )sin
cos ( )

 β + φ φ + β + φ φ
 β + φ 

 t    t  
 t  

(6) 

      = K [cosφ 3 + sinφ 3 tan ( 1t + β φ )] provided cos ( 1t + β φ ) ≠  0. 

Since trigonometric functions involved in (5) and (6) are periodic (as sine and cosine functions are 

periodic), so it is clear that lim
t

y
x→∞

 does not exist and so the paths do not enter (0, 0). But from (5) and 

(6), it is clear that the paths approach (0, 0) in a spiral – like manner, winding around (0, 0) an infinite 
number of times as t  →+ ∞ . So the critical point (0, 0) is a spiral point. Clearly, it is asympototically 
stable. A qualitative diagram is given below 

 
If α  > 0, the situation is the same except that the paths approach (0, 0) as t  →− ∞ , the spiral point (0, 0) 
is unstable, and the arrows in this figure are reversed. 
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3.5.9. Theorem. Consider the linear system 

dx   =  ax + by
dt
dy   =  cx + dy
dt







  (1) 

where 
a b
c d

 ≠  0, so that (0, 0) is the only critical point of the system. The roots λ 1 and λ 2 of the 

characteristic equation λ 2 – (a + d) λ  + (ad – bc) = 0 are purely imaginary, then the critical point (0, 0) 
of the linear system (1) is center. 

Proof. Since λ 1 and λ 2 are purely imaginary so we may write them as iα ± β , where α  = 0 but β  is 

real and unequal to zero. Then the general real solution of (1) may be written as  

  x = K1 cos ( 1t + β φ ) 

  y = K2 cos ( 2t + β φ )      (2) 

where K1, K2, φ 1 and φ 2 are defined in the theorem – 4. The solutions (2) define the paths in the real xy 

– phase plane. We know that the trigonometric functions in (2) oscillate indefinitely between + 1 and – 1 
as t→∞  and as t  →− ∞ , so the paths do not approach (0, 0) as t  →+ ∞  or as t  →− ∞ . Rather it is clear 
from (2) that x and y are periodic functions of t and hence the paths are closed curves surrounding (0, 0), 
members of which are arbitrarily close to (0, 0). In fact they are infinite family of ellipse with center at 
(0, 0). Hence the critical point (0, 0) is center. Clearly it is stable. However, since the paths do not 
approach(0, 0), the critical point is not asymptotically stable. A qualitative diagram of the paths appear 
in the adjoining figure  
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3.5.10. Example. Determine the nature of the critical point (0, 0) of the system 

   
    2   7

    3   8

dx x y
dt
dy x y
dt

= − 

= − 

    (1) 

and determine whether or not the point is stable. 

Solution. Comparing system (1) with standard system  

   

dx   =  ax + by
dt
dy   =  cx + dy
dt

 

we get, a = 2, b = – 7, c = 3 and d = – 8. 

We know that characteristic equation is λ 2 – (a + d) λ  + (ad – bc) = 0, 

that is,  λ 2 + 6λ  + 5 = 0     (2) 

Hence the roots of characteristic equation are λ 1 = – 5 and λ 2 = – 1. Since the roots are real, unequal 
and of the same sign (both negative), we conclude that the critical point (0, 0) of (1) is a node. Since the 
roots are real and negative, the point is asymptotically stable. 

3.5.11. Example. Consider the linear autonomous system  

    
3

dx   x  y
dt
dy   x y
dt

= + 

= −


    (1) 

(i) Determine the nature of the critical point (0, 0) of this system. 

(ii)  Find the general solution of this system. 

(iii) Find the differential equation of the paths in the xy-plane and obtain the general solution of this 
differential equation. 

Solution. (i) Comparing (1) with the system 

  

dx   =  ax + by 
dt
dy   =  cx + dy 
dt

 

Here a = 1, b = 1, c = 3, d = – 1 

The characteristic equation is  

  λ 2 – (a +d) λ  + (ad – bc) = 0 ⇒  λ 2 – 4 = 0 
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Roots are λ 1 = 2, λ 2 = – 2. 

Since the roots are real, unequal and of opposite sign so the critical point (0, 0) is a saddle point. 

(ii) We assume a solution of the form 

    
λ

λ





t

t

x = Ae
y = Be

     (2) 

Substituting (2) into (1), we obtain   

  λ λ λλ = +t t tA e   Ae Be    (λ–1) A – B = 0 

  3λ λ λλ = −t t tB e   Ae Be  ⇒  –3A + (λ+1) B = 0   (3) 

For non–trivial solution of this system, we must have  

  
1 1

3 1
λ − −
− λ +

 = 0 ⇒  λ 1 = 2, λ 2 = – 2 

Setting λ  = λ 1 = 2 in (3), we obtain 

  A – B = 0 ⇒   A – B = 0 

  – 3A +3B = 0 ⇒  A – B = 0 

A simple non – trivial solution of this system is obviously A = B = 1. 

With these values of A, B and λ  we find the non-trivial solution 

  x = 2te , y = 2te      (4) 

Again, setting λ  = λ 2 = – 2 in (3), we obtain  

  – 3A – B = 0 ⇒  3A + B = 0 

  – 3A – B = 0 ⇒  3A + B = 0 

A simple non – trivial solutions of this system is obviously A = 1, B = – 3 

With these values of A, B and λ , we find the non – trivial solution  

   x = 2te− , y = 3 2te−−     (5) 

Using solutions (4) and (5), the general solution may be written as  

  x = 2t 2t
1 2c e c e−+ , y = 32t 2t

1 2c e c e−−  

where c1 and c2 are arbitrary constants. 

(iii) Eliminating dt from equations (1), we obtain  

  3dy x y    
dx x y

−
=

+
      (6) 
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which is a homogeneous first order differential equation,  

Put y = vx ⇒  dy
dx

 = v + x dv
dx

 

Hence (6) can be written as v + x dv
dx

 = 3
1

v
v

−
+

 ⇒  x dv
dx

 = 
23 2

1
v v

v
− −
+

 

 ⇒  1
2 2

2(1 )
2 3

v
v v

+
+ −

 dv = dx
x

−  

Integrating both sides 1
2

log 2 3)2(v v+ −  = – logx + log c'  

 ⇒  log 2 3)2(v v+ −  = log 2
c
x

 
 
 

, where c = ( 2c')   

 ⇒  2 32v v+ −  = 2
c
x

 ⇒  y2 + 2xy −3x2 = c [since y = vx]  (7) 

where c is an arbitrary constant. Equation (7) is the equation of the family of paths in the xy-phase plane. 

3.5.12. Exercises. Determine the nature of the critical point (0, 0) of each of the linear autonomous 
systems in following exercises. Also, determine whether or not the critical point is stable. 

1.  dx dy  =  3x + 4y     ,        =  3x + 2y
dt dt

 (Saddle point, unstable) 

2.  dx dy  =  x y     ,        =  x + 5y
dt dt

−   (Node, unstable) 

3.  dx dy  =  x + 3y     ,        =  3x + y
dt dt

  (Saddle point, unstable ) 

4.  dx dy  =  2x  4y     ,        =  2x  2y
dt dt

− −  (Center, stable ) 

3.6. Critical points and paths of nonlinear systems. We now consider the nonlinear real autonomous 
system   

   

dx   =  P(x , y)
dt
dy   =  Q(x , y)
dt







     (1) 

We assume that the system (1) has an isolated critical point which we shall choose to be the origin (0, 0). 
We now assume further that the functions P and Q on the right members of (1) are such that P(x, y) and 
Q(x, y) can be written in the form 

  P(x, y) = ax + by + P1(x, y) 

  Q(x, y) = cx + dy + Q1(x, y)      (2) 
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where 

(i) a, b, c and d are real constants and 
a b
c d

≠ 0. 

(ii) P1 and Q1 have continuous first partial derivatives for all (x, y) and are such that 

  1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

P x  y 
x y

 = 0 1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

Q x  y 
x y

 = 0  (3) 

Thus the system under consideration may be written in the form 

  
1

1

dx   =  ax + by + P (x , y)
dt
dy   =  cx + dy + Q (x , y)
dt

     (4) 

where a, b, c, d, P1 and Q1 satisfy the requirements (i) and (ii) above. 

Also, if P(x, y) and Q(x,y) in (1) can be expanded in power series about (0, 0), the system (1) takes the 
form 

 

2 2
12 22 21

(0 , 0) (0 , 0)

2 2
12 22 21

(0 , 0) (0 , 0)

...

...

    

    

dx P P    x  y  a x a xy  a y
dt x y

dy Q Q    x  y  b x b xy  b y
dt x y

 ∂ ∂ = + + + + +   ∂ ∂    


 ∂ ∂  = + + + + +   ∂ ∂    

  (5) 

This system is of the form (4), where P1(x, y) and Q1(x, y) are the terms of higher degree in the rigt 
members of the equations. The requirements (i) and (ii) will be satisfied provided the  

Jacobian 
(0 , 0)

( , ) 0
( , )   

P  Q
x  y

 ∂
≠ ∂ 

. 

Note that the constant term are missing in the expansions in the right members of (5) because  

P(0, 0) = Q(0, 0) = 0. 

3.6.1. Example. The system 32 2dx dy  =  x + 2y + x     ,      =  x  4y + 2y
dt dt

− −  is of the form (4) and 

satisfies the requirements (i) and (ii) above. Here a = 1, b = 2, c = – 3, d = – 4 and 
a b
c d

 = 2 ≠  0. 

Further, P1(x, y) = x2, Q1(x, y) = 2y2 and hence 

 1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

P x  y 
x y

 = 
2

2 2( , ) (0 , 0)
lim
→ +x   y   

x   
x y

 = 0 
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and  1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

Q x  y 
x y

 = 
2

2 2( , ) (0 , 0)

2lim
→ +x   y   

 y 
x y

 = 0 

By the requirement (ii) of the non – linear term P1(x, y) and Q1(x, y) in (4) tend to zero more rapidly than 
the linear terms ax + by and cx + dy. Hence one would suspect that the behaviour of the paths of the 
system (4) near (0, 0) would be similar to that of the paths of the related linear system 

   dx dy  =  ax + by       ,         =  cx + dy 
dt dt

 

obtained from (4) by neglecting the non linear terms. 

3.6.2. Theorem (Without Proof).  

Hypothesis. Consider the linear system 

    
1

1

dx   =  ax + by + P (x , y)
dt
dy   =  cx + dy + Q (x , y)
dt

   (1) 

where a, b, c, d, P1 and Q1 satisfy the requirements (i) and (ii) above. Consider also the corresponding 
linear system 

    

dx   =  ax + by 
dt
dy   =  cx + dy 
dt

    (2) 

obtained from (1) by neglecting the non – linear terms P1(x, y) and Q1(x, y). Both systems have an 
isolated critical point at (0, 0). Let λ 1 and λ 2 be the roots of the characteristic equation 

  λ 2 – (a + d) λ  + (ad – bc) = 0    (3) 

of the linear system (2). 

Conclusions. (1) The critical point (0, 0) of the non – linear system (1) is of the same type as that of the 
linear system (2) in the following cases.- 

(i) If λ 1 and λ 2 are real, unequal and of the same sign, then not only (0, 0) is a node of (2), but also (0, 
0) is a node of (1). 

(ii) If λ 1 and λ 2 are real, unequal and of opposite sign, then not only (0, 0) is a saddle point of (2), but 
also (0, 0) is a saddle point of (1). 

(iii) If λ 1 and λ 2 are real and equal and the system (2) is not such that a = d ≠  0, b = c = 0, then not 
only (0, 0) is a node of (2) but also (0, 0) is a node of (1). 

(iv) If λ 1 and λ 2 are conjugate complex with real part not zero, then not only (0, 0) is a spiral point of 
(2), but also (0, 0) is a spiral point of (1). 
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(II) The critical point (0, 0) of the non – linear system (1) is not necessarily of the same type as that of 
the linear system (2) in the following cases.- 

(v) If λ 1 and λ 2 are real and equal and the system (2) is such that a = d ≠  0, b = c = 0, then although (0, 
0) is a node of (2), the point (0, 0) may be either a node or a spiral point of (1). 

(vi) If λ 1 and λ 2 are pure imaginary, then although (0, 0) is a center of (2), the point (0, 0) may be 
either a center or a spiral point of (1). 

3.6.3. Theorem (Without Proof). Assuming the hypothesis of the above theorem we can find following 
conclusions concerning the stability of the critical point. 

(i) If both roots of the characteristic equation of the linear system (2) are real and negative or conjugate 
complex with negative real parts, then not only (0, 0) an asymptotically stable critical point of (2) but 
also (0, 0) is an asymptotically stable critical point of (1). 

(ii) If the roots of the characteristic equation are pure imaginary, then although (0, 0) is a stable critical 
point of (2), it is not necessarily a stable critical point of (1). Indeed the critical point (0, 0) of (1) may be 
asymptotically stable, but not asymptotically stable, or unstable.  

(iii) If either of the roots of characteristic equation is real and positive or is the roots are conjugate 
complex with positive real parts, then not only (0, 0) an unstable critical point of (2), but also (0, 0) is an 
unstable critical point of (1). 

3.6.4. Example. Consider the non – linear system 

   

24

6 2

dx     x  y x  
dt
dy     x y xy 
dt

= + − 

= − +


    (1) 

This is of the form 

   
1

1

dx   =  ax + by + P (x , y)
dt
dy   =  cx + dy + Q (x , y)
dt

  

where a = 1, b = 4, c = 6, d = – 1 

 P1(x, y) = – x2, Q1(x, y) = 2xy. 

Here requirements (i) and (ii) of above theorems i.e 

 
a b
c d

 ≠  0 and 1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

P x  y 
x y

 = 1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

Q x  y 
x y

 = 0 

are both satisfied as 
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a b
c d

 = 
1 4
6 1−

 = – 25 ≠  0 and 
2

2 2( , ) (0 , 0)
lim
→

−

+x   y   

x 
x y

 = 
2

2 2 20
lim
→

−

+x  

x 
x m x

 = 0. 

Also, 
2 2( , ) (0 , 0)

2lim
→ +x   y   

xy 
x y

 = 
2

2 2 2( , ) (0 , 0)

2lim
→ +x   y   

mx 
x m x

 = 0 

Hence to investigate the critical point (0, 0) of (1), we consider the linear system 

    
4

6

dx     x  y 
dt
dy     x y 
dt

= + 

= −


    (2) 

The characteristic equation of (2) is  

 λ 2 – 25 = 0 ⇒  λ  = 5, – 5. 

Since the roots are real, unequal and of opposite sign, so the critical point (0, 0) is a saddle point of (2) 
and by above theorem, it is also a saddle point of non – linear system (1). 

Also, clearly this point is unstable. 

Eliminating dt from equations (1), we obtain the differential equation  

   2
6 2

4
dy x y xy  
dx x y x

− +
=

+ −
      (3) 

which gives the slope of the paths in xy phase plane defined by the solutions of (1). The differential 
equation (3), can be written as  

  (6x – y + 2xy) dx – (x + 4y – x2) dy = 0 

Comparing it with Mdx + Ndy = 0 

 M = 6x – y + 2xy  N = – (x + 4y – x2) 

Then M
y

∂
∂

 = –1 + 2x , N
x

∂
∂

 = –1 + 2x 

Therefore, M
y

∂
∂

 = N
x

∂
∂

. Hence differential equation (3) is an exact differential equation. 

Its solution is ( )
  constant

  Terms in  not containing 
=

+∫ ∫
y

Mdx N x  dy = C  

  ⇒  ( ) 46x y+2xy  dx + y dy− −∫ ∫  = C 

  ⇒  3x2 – xy + x2y – 2y2 = C     (4) 

where c is an an arbitrary constant. Equation (4) is the equation of the family of paths in the xy phase 
plane. 
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3.7. Check Your Progress. 

Determine the nature of the critical point (0, 0) of the system 

1. 
2 4

2 6

dx      x  y
dt
dy    x  y
dt

= + 

= − + 

  

2.  
  sin  4

  sin 2 5

= − 

= −


dx x y
dt
dy x y
dt

  

3.8. Summary. 

On behalf of the results obtained in the theorems, the following table can be considered as the 
concluding one for the critical point of a plane autonomous system 

 S. 
No. 

Nature of Roots λ 1, 
λ 2 

Nature of Critical 
point  

Stability of critical point 

1. Real, unequal, same 
sign 

Node Asympototically stable if roots are 
negative and unstable if roots are 
positive. 

2. Real,unequal, 
opposite sign  

Saddle point Unstable. 

3. Real and equal. Node Asympototically stable if roots are 
negative and unstable if roots are 
positive. 

4. Conjugate complex 
but not pure 
imaginary. 

Spiral point Asympototically stable if real part of 
roots is negative and unstable if real 
part of roots is positive. 

5. Pure imaginary  Center Stable but not asymptotically stable. 
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Liapunov Function, Limit Cycles and Sturm Liouville BVP 

Structure 

4.1. Introduction. 

4.2. Liapunov’s direct method. 

4.3. Limit Cycles. 

4.4. Floquet Theory. 

4.5. Sturm Liouville Boundary Value Problems. 

4.6. Check Your Progress. 

4.7. Summary. 

4.1. Introduction. This chapter contains important results to check the stability and asymptotic stability 
of critical point of an autonomous system. Also the concept of periodic solutions for a linear 
homogeneous system, limit cycles, Sturm Liouville BVP are discussed.  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) The methods to obtain solution of a Sturm Liouville BVP. 

(ii) The methods to check the stability and asymptotic stability of critical points. 

(iii) The concepts of limit cycles. 

4.1.2. Keywords. Liouville Function, SLBVP, Limit Cycles, Periodic Solutions. 
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4.2. Liapunov’s direct method.  

Let E(x, y) have continuous first partial derivatives at all points (x, y) in a domain D containing the 
origin (0, 0). 

(1) The function E is called positive definite in D if E (0, 0) = 0 and E (x, y) > 0 for all other points  
(x, y) in D. 

(2) The function E is called positive semi definite in D if E (0, 0) = 0 and E (x, y) ≥0 for all other points 
(x, y) in D. 

(3) The function E is called negative definite in D if E(0, 0) = 0 and E (x, y) < 0 for all other points  
(x, y) in D. 

(4) The function E is called negative semi definite in D if E (0, 0) = 0 and E (x, y)≤  0 for all other 
points (x, y) in D.  

For example, 

1. The function E defined by E (x, y) = x2 + y2 is positive definite in every domain D containing (0, 0). 
Clearly E (0, 0) = 0 and E (x, y) > 0 for all (x, y) ≠  (0, 0). 

2. The function E defined by E (x, y) = x2 is positive semi definite in very domain D containing (0, 0). 
Note that E (0, 0) = 0, E (0, y) = 0 for all (0, y) such that y ≠  0 in D, and E (x, y) > 0 for all (x, y) 
such that x≠ 0 in D. There are no other points in D and so we see that E (0, 0) = 0 and E (x, y) ≥  0 
for all other points in D. 

3. In like manner, we see that the function E defined by E (x, y) = −x2 −y2 is negative definite in D 
and that defined by E (x, y) = −x2 is negative semi definite in D. 

4.2.1. Derivative with Respect to Given System. Consider the non – linear autonomous system  

   







dx   =  P(x , y) 
dt
dy   =  Q(x , y) 
dt

    (1) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have 
continuous first partial derivatives for all (x, y). Let E (x, y) have continuous first partial derivatives at all 
points (x, y) in a domain D containing the origin (0, 0). The derivative of E with respect to the system (1) 
is the function E  defined by 

  E (x, y) = E(x , y) E(x , y) P(x , y) +  Q(x , y)
x y

∂ ∂
∂ ∂

  

For example, consider the system 

  

2

2

= − + 

= − +


dx     x  y  
dt
dy     y  x  
dt

    (1) 

and the function E defined by E (x, y) = x2 + y2. 
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Here, we have P(x, y) = −x + y2, Q(x, y) = −y + x2, E(x, y) = x2 + y2. Then derivative of E w.r.t. the 
system (1) is given by 

E  (x, y) = E E P(x , y) +  Q(x , y)
x y

∂ ∂
∂ ∂

= 2x(−x + y2) + 2y (−y + x2) = −2x2–2y2 + 2x2y + 2xy2. 

Remark. Let C be a path of non – linear system (1) and let x = x(t), y = y(t) be an arbitrary solution of 
(1) defining C parametrically; and let E(x, y) have continuous first partial derivatives for all (x, y) in a 
domain containing C. Then E is a composite function of t along C, and using the chain rule, we find that 
the derivative of E w.r.t. to t along C is 

 [ ( ) , ( )]dE x t   y t
dt

 = ( ){ ( ) , ( )x
dx tE x t   y t  

dt
 + ( ){ ( ) , ( )y

dy tE x t   y t  
dt

  

 = Ex [x(t), y(t) P [x(t), y(t)] + Ey [x(t), y(t)] Q[x(t), y(t)]  

= E [x(t), y(t)] 

Thus we see that the derivative of E ( )( ) , ( )x t   y t  with respect to t along the path C is equal to the 

derivative of E w.r.t. to the system (1), evaluated at x = x(t) and y = y(t). 

4.2.2. Liapunov Function. Consider the system (non – linear) 

   
( , )

( , )

= 

=


dx     P x  y  
dt
dy     Q x  y  
dt

     (1) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have 
continuous first partial derivatives for all (x, y). Let E (x, y) be positive definite for all (x, y) in domain D 

containing the origin and such that the derivative E


(x, y) of E with respect to the system (1) is negative 
semi definite for all (x, y) ∈  D. Then E(x, y) is called a Liapunov function for the system (1) in D. 

4.2.3. Example. Consider the system 

   

2

2

= − + 

= − +


dx     x  y  
dt
dy     y  x  
dt

      (1) 

and the function E defined by 
   E (x, y) = x2 + y2      (2) 

It is clear that E (x, y) is positive definite in every domain D containing (0, 0). In previous example, we 
have found 

  E  (x, y) = −2(x2 + y2) + 2 (x2y + xy2)     (3) 
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for all (x, y). If this is negative semi – definite for all (x, y) in some domain D containing (0, 0), then E 
defined by (2) is a Liapunov function for the system (1).  

Clearly E


(0, 0) = 0. Now observe the following: 

If x < 1 and y ≠  0, then xy2 < y2 and if y < 1 and x ≠  0, then x2y < x2. Thus if x < 1, y < 1 and (x, y) ≠  
(0, 0) then x2y + xy2 < x2 + y2 and hence − (x2 + y2) + (x2y + xy2) < 0 

Thus in every domain D containing (0, 0) and such that x < 1 and y < 1, E


(x, y) given by (3) is negative 
definite and hence negative semi definite. Thus E defined by (2) is a Liapunov function for the system 
(1). 

4.2.4. Theorem. Consider the non – linear autonomous system  

   
( , )

( , )

= 

=


dx     P x  y  
dt
dy     Q x  y  
dt

    (1) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have 
continuous first partial derivatives for all (x, y). If there exist a Liapunov function E(x, y) for the system 
(1) in some domain D containing (0, 0), then the critical point (0, 0) of (1) is stable. 

Proof. Let Kε  be a circle of radius ε  > 0 with centre at the critical point (0, 0), where ε  > 0 is small 
enough so that this circle Kε  lies entirely in the domain D. From a theorem of real analysis, we know 
that a real valued function which is continuous on a closed bounded set assumes both a maximum value 
and a minimum value on that set. Since the circle Kε  is closed bounded set in the plane and E is 
continuous in D and hence on Kε , so by above mentioned theorem, E assumes, in particular, a minimum 
value on Kε .  

Now since E (x, y) is a Liapunov function, So, E is positive definite in D and so minimum value of E 
must be positive. Thus E assumes a positive minimum m on the circle Kε  . Next observe that since E is 
continuous at (0, 0) and E(0, 0) = 0, there exists a positive number δ  satisfying δ < ε  such that E(x, y) < 
m for all (x, y) within or on the circle Kδ  of radius δ  and center at (0, 0). 
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Now let C be any path of (1) and let x = x(t), y = y(t) be an arbitrary solution of (1) defining C 
parametrically and suppose C defined by [x(t), y(t)] is at a point within the inner circle Kδ  at t = t0. Then  

   E[x( 0t ), y( 0t )] < m  

Now since E  is negative semi-definite in D (as E is a Liapunov function) and we know that the 
derivative of E[x(t), y(t)] w.r.t. ‘t’ along the path C is equal to the derivative of E w.r.t. to the system (1) 
evaluated at  

    x = x(t), y = y(t)  

that is,    [ ( ) , ( )]dE x t   y t
dt

 = E [x(t), y(t)] 

But    E [x(t), y(t)] ≤  0   [Since E  is negative semi-definite] 

So, we have  

    [ ( ) , ( )]dE x t   y t
dt

 ≤  0 for [x(t), y(t)] ∈  D. 

Thus E[x(t), y(t)] is a non-increasing function of t along C. Hence 

   E[x(t), y(t)] ≤  E[x(t0), y(t0)] < m for all t > t0 

Since, E[x(t), y(t)] would have to be ≥  m on the outer circle Kε , we see that the path C defined by x = 

x(t), y = y(t) must remain within Kε  for all t > t0. Thus from the definition of stability of the critical 
point (0, 0), we see that the critical point (0, 0) of (1) is stable. 

4.2.5. Theorem. Consider the system  

  
( , )

( , )

= 

=


dx   P x  y
dt
dy   Q x  y
dt

      (1) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and Q have 
continuous first partial derivatives for all (x, y). If there exists a Liapunov function E for the 

system (1) in some domain D containing (0, 0) such that E also has the property that E
•

 is negative 
definite in D, then the critical point (0, 0) of (1) is asymptotically stable. 

Proof. Let Kε  be a circle of radius ε  > 0 with center at the critical point (0, 0) and lying entirely in D. 
Also let C be any path of (1) and let x = x(t), y = y(t) be an arbitrary solution of (1) defining C 
parametrically and suppose C defined by [x(t), y(t)] is at a point within Kε  at t = t0. 
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Now since E  is given negative definite, we have E [x(t), y(t)] < 0 for [x(t), y(t)] ∈  D 

But we know that [ ( ) , ( )]dE x t   y t
dt

 = E  [x(t), y(t)] 

So, we must have [ ( ) , ( )]dE x t   y t
dt

 < 0 for [x(t), y(t)] ∈  D. 

Thus, E[x(t), y(t)] is strictly decreasing function of t along C. Since E is positive definite in D, thus lim
t→∞

 

E[x(t), y(t)] exists and is some number L ≥  0. 

We shall prove that L = 0. 

On the contrary, assume that L > 0. Since E is positive definite, there exists a positive number γ  
satisfying γ  < ε  such that E (x, y) < L for all (x, y) within the circle Kγ  of radius γ  and centre (0, 0). By 

a theorem of real analysis, we know that a real - valued function which is continuous on a closed 
bounded set assumes both maximum value and a minimum value on that set. We apply this theorem to 
the continuous function E on the closed region R between and on the two circles Kε  and Kγ . So, E  

must have a maximum value on this region R. But E  is negative definite in D and hence in this region R 
which does not include (0, 0), so we see that E assumes a negative maximum −k on R.  

Since E [x(t), y(t)] is strictly decreasing function of t along C and  

  lim
→∞t

 E[x(t), y(t)] = L 

so the path C defined by x = x(t), y = y(t) cannot enter the domain Kγ  for any t > t0 and so remains in R 

for all t ≥  t0. Thus we have  

  E  [x(t), y(t)] ≤  −k for all t ≥  t0. 

But we know that dE[x(t) , y(t)]
dt

 = E  [x(t), y(t)] 
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So, we obtain dE[x(t) , y(t)]
dt

 ≤  −k for all t ≥  t0     (2) 

Now consider the identity  

  E[x(t), y(t)] −E[x(t0), y(t0)] = 
0

[ ( ) , ( )]
∫

t

t

dE x t   y t  dt
dt

   (3) 

 

Using (2) on R.H.S. of (3), we get 

  E[x(t), y(t)] −E[x(t0), y(t0)] ≤  
0

t

t
k dt∫  

 ⇒  E[x(t), y(t)] ≤  E[x(t0), y(t0)] −k(t− t0) for all t ≥  t0 

Taking limit t→∞  we get 

  lim
t→∞

 E[x(t), y(t)] = − ∞ . 

But this contradicts the hypothesis that E is positive definite in D and the assumption that  

  lim
t→∞

 E[x(t), y(t)] = L > 0 

So, we must have L = 0, that is,  

  lim
t→∞

 E[x(t), y(t)] = 0 

Since E is positive definite in D, E(x, y) = 0 if and only if (x, y) = (0, 0). Thus 

  lim
t→∞

 E[x(t), y(t)] = 0 

if and only if  lim
t→∞

 x(t) = 0 and lim
t→∞

 y(t) = 0. 

Hence by definition of asymptotic stability of the critical point (0, 0), we see that the critical point (0, 0) 
of (1) is asymptotically stable. 

4.2.6. Example. Consider the system 

   

2

2

dx     x y
dt
dy     y x
dt

= − + 

= − +


    (1) 

and the function E(x, y) = x2 + y2. We have seen before in previous example that E is positive definite 
and E is negative definite (on so negative semi-definite). Hence by above theorem (0, 0) is 
asymptotically stable critical point of system (1). 
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4.2.7. Example. Find the nature and stability of the critical point (0, 0) for the non-linear system  

 
4

2

2dx  = x y x
dt
dy  = 6x y xy
dt

+ − 

− +


    (1)  

Also, find the family of the paths of this system. 

Solution : Comparing this with  

   dx
dt

 = ax + by + P1(x, y) 

  dy
dt

 = cx + dy + Q1 (x, y) 

We obtain a = 1, b = 4, c = 6, d = −1 

  P1(x, y) = −x2, Q1(x, y) = 2xy 

We see that  

  
a b
c d

 = 
1 4
6 1−

 = −25 ≠  0  

and   1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

P x  y
x y

 = 
2

2 2( , ) (0 , 0)
lim
→

−

+x   y   

x
x y

 = 0 

   1
2 2( , ) (0 , 0)

( , )lim
→ +x   y   

Q x  y
x y

 = 
2 2( , ) (0 , 0)

2lim
→ +x   y   

x y
x y

 = 0 

Hence to investigate the critical point (0, 0) of (1) we consider the linear system 

  
4dx  = x y

dt
dy  = 6x y
dt

+ 

−


     (2) 

The characteristic equation of (2) is  

  2λ − (a + d)λ  + (ad−bc) = 0 

⇒    2λ −25 = 0 ⇒  λ  = 5±   ⇒  λ 1 = 5, λ 2 = −5  

Since the roots are real, unequal and of opposite sign, so the critical point (0, 0) is the saddle point of the 
system (2) and therefore of system (1). Further, we know that saddle point is always unstable so (0, 0) is 
an unstable critical point of both systems (2) and (1). 

Eliminating dt from system (1) we obtain 
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  dy
dx

 = 
4 2

6x y 2xy
x y x
− +
+ −

    (3) 

which gives the slope of the paths in xy-plane defined by the solutions of (1). Equation (3) is exact and 
let us find its general solution. Equation (3) can be written as  

  (6x−y + 2xy)dx− (x + 4y−x2)dy = 0 

   M = 6x−y + 2xy, N = − (x + 4y −x2) 

Its solution is  

  
 is constant

 (Terms of   not containing )  = 0+ +∫ ∫
y

M dx N x dy C  

⇒    3x2 −  yx + x2y−2y2 + C = 0 

The general solution is 

  3x2 + x2y−xy−2y2 + C = 0 

where C is an arbitrary constant. This equation represents the family of paths in xy phase plane. 

4.3. Limit Cycle : Consider an autonomous system  

    
( ,

( ,

dx P x y)
dt
dy Q x y)
dt

= 

=


    (1) 

A closed path C of the system (1) which is approached spirally from 
either the inside or the outside by a non closed path C1 of the system 
(1) either t→+∞  or as t→−∞  is called a limit cycle of (1). 

4.3.1. Example. Consider the autonomous system 

    

2 2

2 2

(1 )

(1 )

= + − − 

= − + − −


dx y x x y
dt
dy x y x y
dt

   (1) 

To study this system we shall introduce polar co-ordinates (r, θ ) where 

x = rcosθ , y = rsinθ    (2) 

from this relation we find that  

  
2

+ = 
θ− =


dx dy drx y r
dt dt dt
dy dx dx y r
dt dt dt

   (3) 
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Now multiplying the (1) equation of first by x and second by y and adding we obtain 

    dx dyx y
dt dt

+  = (x2 + y2)(1−x2−y2) 

Introducing the polar coordinates defined by (2) and making use of (3) this become 

    drr
dt

 = r2(1− r2) 

For r ≠  0 we may these write 

    dr
dt

 = r(1− r2) 

Now multiplying the (1) equation first by y and the second by x and subtracting we obtain  

    dx dyy x
dt dt

−  = y2 + x2 

Again using (3) ; we get  

    − r2 d
dt
θ  = r2 and for r ≠  0 we may write it  

    d
dt
θ  = −1 

Thus in polar co-ordinates the system (1) becomes 

    

2(1 )

1

= − 
θ = −


dr r r
dt
d
dt

   (4) 

from the second of these equations we find at once that θ  = − t + t0, where t0 is an arbitrary constant. 
The first of the equation (4) is separable separating variable we have  

    2(1 )
=

−
dr   dt

r r
 

and an integration using partial fraction yields log r2− log(1− r2) = 2t + log 0C  

After manipulation we have r2 = 
2t

0
2t

0

C e
1 C e+

. Thus we may write r = 
2

1
1 tCe−+

 where C = 
0

1
C

 

Thus the solution of system (4) may be written  

2

1
1 t

0

r  =  
Ce

 = t t

−




+ 
θ − + 
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where c and t0 are arbitrary constants. We may choose t0 = 0. Then θ  = − t, using (2), the solution of the 
system (1) become 

    x = 
2

cos
1 t

t
Ce−+

 y = 
2

sin
1 t

t
Ce−+

  (5) 

The solution (5) of (1) defines the paths of (1) in xy-plane. Explaining their paths for various values of 
C, we note the following conclusions . 

1. If C = 0, the path defined by (5) is the circle x2 + y2 = 1, described in clockwise direction. 

2. If C ≠  0 the path defined by (5) are not closed paths but rather paths having a spiral behavior.  

a) If C > 0 the paths are spirals lying inside the circle x2 + y2 = 1. As t→+∞ , they approach this circle 
while as t→−∞ , they approach the critical point (0, 0) of (1).  

b) If C < 0, the paths lie outside the circle x2 + y2 = 1. These outer paths also this circle as t→+∞ , while 

as t log C→  both x  and y  becomes infinite. 

Since the closed path x2 + y2 = 1 is approached spirally from both the sides, inside and outside by non-
closed paths as t→+∞ . We conclude that this circle is a limit cycle of the system (1). 

4.3.2. Bendixson’s Non existence criterion. 

Hypothesis. Let D be a domain in the xy – plane. Consider the autonomous system 

   
, )

, )

dx P(x y
dt
dy Q(x y
dt

= 

=


    (1) 

where P and Q are continuous first partial derivatives in D. Suppose that ( , ) ( , )∂ ∂
+

∂ ∂
P x  y Q x  y

x y
 has the 

same sign throughout D. 

Conclusion. System (1) has no closed path in domain D 

Proof. Let C be a closed curve in D ; let R be the region bounded by C and apply Green’s theorem in the 
plane. We have  

   [ ]( , ) ( , )−∫
C

P x  y  dy Q x  y  dx  = ( , ) ( , ) ∂ ∂
+ ∂ ∂ 

∫∫R
P x  y Q x  y

x y
 ds,  

where the line integral is taken in the positive sense. Now assume that C is a closed path of (1), let x = f 
(t), y = g(t) be an arbitrary solution of (1) defining C parametrically and let T denote the period of this 
solution. Then  

  ( ) [ ( ) , ( )]=
d f t P f t   g t

dt
, ( ) [ ( ) , ( )]=

d g t Q f t   g t
dt
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along C and we have  

 [ ]( , ) ( , )−∫
C

P x  y  dy Q x  y  dx  = 
0

( ) ( )[ ( ) , ( )] [ ( ) , ( )] − 
 ∫

T dg t df tP f  t   g t Q f  t   g t  dt
dt dt

 

   = { }
0

[ ( ) , ( )] [ ( ) , ( )] [ ( ) , ( )] [ ( ) , ( )]−∫
T

P f  t   g t Q f  t  g t Q f t   g t P f t   g t  dt  = 0 

Thus,  ( , ) ( , ) ∂ ∂
+ ∂ ∂ 

∫∫R
P x  y Q x  y

x y
ds = 0 

But this double integral can be zero only if ( , ) ( , )∂ ∂
+

∂ ∂
P x  y Q x  y

x y
 changes sign. This is a contradiction, 

thus C is not a path of (1) and (1) possesses no closed path in d. 

4.3.3. Half Path. Let C be a path of the system 

  dx dyP(x , y)  and  Q(x , y)  
dt dt

= = 


    (1)  

and let x = f(t), y = g(t) be a solution of (1) defining C. Then we shall call the set of all points of C for t≥  
t0, where t0 is some value of t, a half path of (1). In other words, by a half – path of (1) we mean the set 
of all points with co – ordinates [f(t), g(t)] for t0≤ t < +∞ . We denote a half – path of (1) by C+. 

4.3.4. Limit Point of a Half Path. Let C+ be a half – path of (1) defined by x = f(t), y = g(t) for t≥ t0. Let 
(x1, y1) be a point in the xy – plane. If there exists a sequence of real numbers {tn}, n = 1, 2,… such that 
tn→+∞  and [f(tn, g(tn))]→ (x1, y1) as n→+∞ , then we call (x1, y1) a limit point of C+. The set of all 
limit points of a half – path C+ will be called the limit set of C+ and will be denoted by L(C+). 

4.3.5. Poincare – Bendixson Theorem “Strong” form (Statement only)  

Hypothesis. (1) Consider the autonomous system  

   

dx P(x , y)
dt
dy Q(x , y)
dt

= 

=


      (i) 

Where P and Q have continuous first partial derivatives in a domain D of the xy – plane. Let D, be the 
bounded sub – domain of D, and let R denote D, plus its boundary. 

(2) Let C+ defined by x = f(t), y = g(t), t ≥ t0 be a half – path of (i) contained entirely in R. Suppose the 
limit set L(C+) of C+ contains no critical points of (i). 

4.3.6. Index of a critical point. Consider the autonomous system 

   

dx P(x , y)
dt
dy Q(x , y)
dt

= 

=


     (1)   
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C 

(x1, y1) P (x1, y1) 

Q (x1, y1) 
θ 

where P and Q have continuous first partial derivatives in a domain D of xy-plane.  

Let all the critical points of (1) are isolated. Now consider a simple closed curve C [not necessarily a 
path of (1)] which passes through no critical point of (1).  

Consider a point (x1, y1) on C and the vector [P(x1, y1), Q(x1, y1)] defined by (1) at the point (x1, y1).  

Let θ  denote the angle from the positive x direction to this 
vector. 

Now let (x1, y1) describe the curve C once in the 
anticlockwise direction and return to the original position. 
As (x1, y1) describes the curve C, the vector [P(x1, y1), 
Q(x1, y1)] changes continuously, and so the angle θ also 
varies continuously. When (x1, y1) reaches its original 
position, the angle θ  will have changed by an amount∆ θ . 
Then we call the number  

       I = 
2
∆θ
π

 

the index of the curve C with respect to the system (1). 

Remark. 

1. Clearly ∆ θ  is either equal to zero or a positive or negative integral multiple of 2π  and hence I is 
either zero or a positive or negative integer. 

2. If [P(x1, y1), Q(x1, y1)] merely oscillates but does not make a complete rotation as (x1, y1) describes C, 
then I is zero. 

3. If the net change ∆ θ  in θ  is a decrease, then I is negative. 

4.4. Floquet Theory. It deals with linear system with periodic coefficients. Consider the linear 
homogeneous system  

  dy
dt

 = A(t) y, – ∞  < t < ∞     (1) 

where A(t) is n× n matrix of complex valued continuous functions of real variable t and  

  A(t + w) = A(t)     (2) 

for some constant w ≠  0. Here w is called period of matrix A(t). the system (1) where matrix A(t) is of 
type (2) is called a periodic system. 

Note: The case of periodic variable coefficients can theoretically reduce to the case of constant 
coefficients. This is the essence of the following theorem. 
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4.4.1. Theorem. Let Φ (t) is a fundamental matrix for the system 

   dy
dt

 = A(t) y, – ∞  < t < ∞    (1) 

in which A(t + w) = A(t)     (2) 

Then ψ (t) = Φ (t + w), – ∞  < t < ∞  is also a fundamental matrix for the same system. Moreover, 
corresponding to every fundamental matrix Φ , there exist a periodic non – singular matrix P with period 
w and a constant matrix R of order n – by – n such that Φ (t) = P(t) etk. 

Proof : As Φ (t) is a fundamental matrix for the given system, so  

  'Φ (t) = A(t) Φ (t), – ∞  < t < ∞  

Now, 'ψ (t) = 'Φ (t + w) = A(t + w) Φ (t + w) = A(t) Φ (t + w) = A(t) ψ (t), – ∞  < t < ∞  

This shows that ψ (t) is also a solution of system (1). Further to show ψ (t) is a fundamental matrix we 
have to prove that det ψ (t) ≠  0 for all t. 

Now, det Φ (t) ≠  0, since Φ (t) is a fundamental matrix. 

⇒  det Φ (t + w) ≠  0, – ∞  < t < ∞  ⇒  det ψ (t) ≠  0 

Hence ψ (t) is a fundamental matrix for system (1). 

Now to prove the second part, we have Φ (t) and Φ (t + w) are two fundamental matrix of the system 
(1). so there exist a constant non – singular matrix c such that  

  Φ (t + w) = Φ (t).c    (3) 

As C is a non – singular matrix, then there exist a constant matrix R such that  

  log C = w R  or  C = ewR (4) 

Putting value of c in equation (3), we get  

  Φ (t + w) = Φ (t) ewR    (5) 

Now, we define a matrix P(t) by  

  P(t) = Φ (t) e –tR    (6) 

Then P(t) is a non – singular matrix as both Φ (t) and e –tR are non – singular.  

Moreover, P(t + w) = Φ (t + w) e –(t + w)R = Φ (t) e wR e –(t + w)R = Φ (t) e –tR = P(t)  

This shows that the matrix P(t) is periodic with period w and from equation (6), we can write  

  Φ (t) = P(t) e tR 

This completes the proof. 

4.5. Sturm Liouville Boundary Value Problems. These problems represents a class of linear boundary 
value problems. The importance of these problems lies in the fact that they generates set of orthogonal 
functions. The sets of orthogonal functions are useful in the expansion of a certain class of functions.  
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The Sturm Liouville differential equation is  

  ( )d dup(t) q(t) +  r(t) u = 0
dt dt
  + λ 
 

    (1) 

where p(t) has continuous derivative, q(t) and r(t) are continuous, and p(t) > 0 and r(t) > 0 for all t on a 
real interval [a, b] ; and λ  is a parameter whose value is independent of t. 

Equation (1) is equivalently written as  

  L ( )u(t)  = – λ  u(t)     (2) 

where L is Sturm Liouville operator defined by  

  L = 1 d dp(t) q(t)
r(t) dt dt

   +    
  

Using this, we note that (2) gives 

⇒  1 d dup(t) q(t)u(t)   =   u(t)
r(t) dt dt

   + − λ    
 ⇒  d dup(t) q(t)u(t)   =    u(t) r(t)

dt dt
  + −λ  

 

⇒  [ ]d dup(t) q(t) +  r(t) u(t)  = 0
dt dt
  + λ 
 

 which is equation (1). 

4.5.1. Definition. A Sturm Liouville boundary value problem consists of differential equation (1), that is, 

 [ ]d dup(t) q(t) +  r(t) u(t)  = 0
dt dt
  + λ 
 

 and the boundary conditions 

 1 2

1 2

u(a) + u'(a)  =  0
u(b) + u'(b)  =  0

α α 
β β 

    (*) 

where 1α , 2α  are constants (not both zero) and 1 2 ,  β β  are also constants (not both zero). 

Remark. Two special cases of Sturm Liouville boundary value problems are those in which 
supplementary conditions (i.e. boundary conditions) are either of the form u(a) = 0, u(b) = 0 or of the 
form  

   u' (a) = 0, u' (b) = 0   

4.5.2. Example. Show that the boundary value problem  

   
2

2
d u   u
dt

+ λ  = 0    (1) 

with conditions u(0) = 0, u(π ) = 0 is a Sturm Liouville problem. 
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Solution. Given boundary value problem (1) can be written in the form  

[ ]1.d du 0 + .1 u  = 0
dt dt
  + λ  

 

and hence (1) is of the form [ ]d dup(t) q(t) +  r(t) u  = 0
dt dt
  + λ  

 

where p(t) = 1, q(t) = 0 and r(t) = 1. The supplementary conditions are of the special form  

   u(a) = 0, u(b) = 0. 

4.5.3. Example. Find non-trivial solutions of Sturm Liouville boundary value problem 

  
2

2
d u u
dt

+ λ  = 0      (1) 

  u(0) = 0, u(π ) = 0     (2) 

Solution. We shall consider separately the three cases λ  = 0, λ  < 0 and λ  > 0. 

In each case, we shall first find the general solution of the differential equation (1) and then attempt to 
determine two arbitrary constants in this general solution so that the supplementary conditions (2) will 
also be satisfied. 

Case I. 0λ = . 

In this case (1) reduces to 
2

2
d u
dt

 = 0 and so the general solution is  

  u(t) = c1 + c2t     (3) 

We now apply conditions (2) to solution (3). Condition u(0) = 0 implies  

  0 = c1 + c2.0 ⇒  c1 = 0. 

and condition u(π ) = 0 implies 0 = c1 + c2π  ⇒  c2 = 0 [Since c1 = 0]. 

Thus in order that solution (3) to satisfy conditions (2), we must have c1 = c2 = 0. 

But then the solution (3) becomes u(t) = 0 for all t. Thus, in case when the parameter λ  = 0, the only 
solution of the given problem is the trivial solution. 

Case II. 0λ < . 

Differential equation (1) is 
2

2
d u u
dt

+ λ = 0 

Its auxiliary equation is m2+λ  = 0 and m = ± −λ . Since λ  is negative, so these roots are real and 
unequal. Let us denote −λ  = α , we have the general solution  

  u = c1 teα  + c2 te−α    (4) 

We now apply boundary conditions (2) to the equation (4). 
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Condition u(0) = 0 implies c1 + c2 = 0  (5) 

Condition u(0) = π  implies c1 eαπ  + c2 e−απ  = 0  (6) 

Clearly c1 = c2 = 0 is a solution of (5) and (6), but these values of c1 and c2 would not give the non – 
trivial solution of the given problem. We must therefore seek non-zero values of c1 and c2 which satisfy 
(5) and (6). 

This system has non-zero solution only if the determinant of coefficients is zero. Therefore, we must 

have     1 1
e eαπ −απ

 = 0 

⇒  e−απ – eαπ  = 0  ⇒  e−απ  = eαπ  ⇒  2e απ  = 1 ⇒  α  = 0. 

Since α  = −λ , we must have λ  = 0. But λ  < 0 in this case. Thus there are no non-trivial solution of 
the given problem in this case λ  < 0. 

Case III. 0λ > . 

In this case A.E. is m2+λ  = 0. So its roots are m = ± −λ  

These roots are conjugate complex numbers since λ  > 0. Roots can be written as ± λ i . Thus in this 
case the general solution is of the form  

  u(t) = c1sin λ t + c2cos λ t   (7) 

We now apply conditions (2) to this general solution. Condition u(0) = 0 implies 

  c1sin 0 + c2cos 0 = 0 ⇒  c2 = 0  

Condition u(π ) = 0 implies 

  c1sin λ π  + c2cos λ π  = 0 

 ⇒  c1sin λ π  = 0     (8) 

We must therefore satisfy (8). 

So we can either set c1 = 0 or sin λ π  = 0. However if c1 = 0 then (since c2 = 0 also) the solution (7) 
reduces to the trivial solution. Thus to obtain non-trivial solution we can not set c1 = 0 but rather we 
must set 

 sin λ π  = 0 ⇒  λ  = n, n = 1, 2, 3,…, since λ  is positive 

⇒  λ  = n2, n = 1, 2, 3, … 

Therefore in order that the differential equation (1) have a non-trivial solution of the form (7) satisfying 
the condition (2), we must have  

 λ  = n2 where n = 1, 2, 3,… 
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In other words, the parameter λ  in (1) must be a number of the infinite sequence 1, 4, 9, 16, …. Also 
from (7) we see that non-trivial solutions corresponding to λ  = n2 ( n = 1, 2, 3, …) are given by u(t) = cn 
sin nt, where cn is arbitrary non-zero constant. 

4.5.4. Characteristic Values and Characteristic Functions. 

Consider the Sturm – Liouville problem consisting of the differential equation  

  [ ]d dup(t) q(t) +  r(t) u  = 0
dt dt
  + λ  

   (1) 

and the supplementary conditions 

  1 2

1 2

u(a) + u'(a)  =  0
u(b) + u'(b)  =  0

α α 
β β 

    (2) 

The values of parameter λ  in (1) for which these exist non-trivial solutions of the Sturm Liouville 
problem are called the characteristic values (or eigen values of the problem). The corresponding non-
trivial solutions are called the characteristic functions or the eigen functions of the problem. 

4.5.5. Example. Find the characteristic values and the characteristic functions of the Sturm Liouville 
problem  

  
2

2
d u u
dt

+ λ  = 0   (1) 

  u(0) = 0, u(π ) = 0, 

Solution. The values of λ  in (1) for which there exist non-trivial solutions of this problem are the values 
λ  = n2 where n = 1, 2, 3, … 

Then these are the characteristic values of the problem under consideration. the corresponding non-
trivial solutions. 

 u(t) = cnsin nt (n = 1, 2,…), 

where cn is an arbitrary non-zero constants. 

4.5.6. Orthogonal Functions. Two functions u(t) and v(t) are said to be orthogonal w.r.t. a weight 

function w(t) on [a, b] iff 
b

a

u(t) v(t) w(t) dt∫  = 0. 

Let { }( )n tφ  be a sequence of functions on [a, b]. Then these functions are said to be mutually orthogonal 

w.r.t. a weight function w(t) on [a, b] iff  
b

n m
a

w(t) (t) (t) dtφ φ∫  = 0, m ≠  n. 

4.5.7. Theorem (Orthogonality of characteristic function). 

Consider the Sturm Liouville problem consisting of the differential equation 
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  [ ]d dup(t) q(t) +  r(t) u  = 0
dt dt
  + λ  

  (1) 

where p, q, r are real functions s.t. p(t) has a continuous derivative, q(t) and r(t) are continuous, and p(t) 
> 0 and r(t) > 0 for all t on a real interval a ≤  t ≤  b, and λ  is a parameter independent of t, and the 
conditions  

  1 2

1 2

Au(a) + A u'(a)  =  0
B u(b) + B u'(b)  =  0





   (2) 

where A1, A2, B1, B2 are real constants s.t. A1, A2 are not both zero and B1 and B2 are not both zero. 

Let λm and λ n be any two characteristic values of the problem. Let φ m be a characteristic function 
corresponding to λm and let φ n be a characteristic function corresponding to λ n. 

Then characteristic functions φ m and φ n are orthogonal w.r.t. the weight function r(t) on the interval 
a≤ t≤b. 

Proof. Since φ m is a characteristic function corresponding to λm, so the function φ m satisfies the 
differential equation (1) with λ  = λm. Similarly, φ n satisfies the equation (1) with λ  = λ n. 

Thus we have  

  [ ] [ ]( )m m m
d p(t) ' t q(t) +  r(t)  (t)  = 0
dt

φ + λ φ   (3) 

  [ ] [ ]( )n n n
d p(t) ' t q(t) +  r(t)  (t)  = 0
dt

φ + λ φ   (4) 

for all t s.t. a ≤  t ≤  b. 

Multiplying (3) by φ n(t) and (4) by φ m(t) and substracting, we get 

    φ n(t) [ ]( ) .m m m n
d p(t) ' t (t) (t) r(t)
dt

φ + λ φ φ [ ]( ) ( ) .m n n n m
dt p(t) ' t (t) (t) r(t)
dt

−φ φ −λ φ φ  = 0 

⇒  (λm – λ n) φ m(t) φ n(t) r(t) = [ ]( ) ( )m n
dt p(t) ' t
dt

φ φ  – φ n(t) [ ]( )m
d p(t) ' t
dt

φ  

Integrating it w.r.t. ‘t’ from limit a to b, we get  

   (λm – λ n) ( ) ( )
b

m n
a

t  t  r(t) dtφ φ∫  = ( )
b

m
a

tφ∫ [ ]( )n
d p(t) ' t dt
dt

φ  – ( )
b

n
a

tφ∫ [ ]( )m
d p(t) ' t dt
dt

φ   (5) 

Applying integration by parts to each integral in the right member of equation, so this right member 
becomes 

 [ ]( ) b
m n a

t p(t) ' (t)φ φ  – [ ]( ) b
n m a

t p(t) ' (t)φ φ  = { }( ) ( )
b

m n n m a
p(t) t ' (t) t ' (t) φ φ −φ φ   

Therefore (5) becomes 
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(λm –λ n) ( ) ( )
b

m n
a

t  t  r(t) dtφ φ∫  = p(b)[ ]'( ) '( )m n n m(b) b (b) bφ φ −φ φ –p(a)[ ]'( ) '( )m n n m(a) a (a) aφ φ −φ φ  (6) 

Since φ m and φ n are characteristic functions of the problem, they satisfy the conditions (2) of the 
problem and now consider the different cases as follows : 

Case I. A2 = 0, B2 = 0. 

So the conditions reduces to u(a) = 0, u(b) = 0. Then in this case φ m(a) = φ m(b) = 0  

 and φ n(a) = φ n(b) = 0 and so equation (6) gives  

  ( ) ( )
b

m n
a

t  t  r(t) dtφ φ∫  = 0 [Since λm ≠  λ n]. 

Case II. If A2 = 0, B2 ≠  0 

So the conditions (2) reduces to u(a) = 0 and αu(b) + u' (b) = 0 where α  = 1

2

B
B

 

Then in this case, we have φ n(a) = 0 . φ m(a) = 0. 

and   
( ) '(
( ) '(

n n

m m

 b   b)   =  0
 b   b)  =  0

α φ + φ 
α φ + φ 

    (7) 

So the equation (6) becomes 

(λm – λ n) ( )
b

n
a

tφ∫ φ m(t) r(t) dt = p(b) ( ) ( )' '
m n n m(b) b (b) b φ φ −φ φ   

     = p(b) ( ) ( ) ( ( ( (' '
m n n m m n m n(b) b (b) b  b) b)  b) b) φ φ −φ φ +β φ φ −β φ φ    

= p(b) { } { }( ) ( ) ( ) ( ) ( )' '
m n n n m m(b)  b b b  b b φ α φ + φ −φ α φ + φ   = 0 

using (7). Therefore, 

( ) ( )
b

m n
a

t  t  r(t) dtφ φ∫  = 0  [Sinceλm ≠  λ n]  

Case III. If A2 ≠  0, B2 = 0 

This case is similar to case-(II). 

Case IV. If A2 ≠  0, B2 ≠  0. So the conditions are  

 1  u(a) + u'(a)  =  0α  where α 1 = 1

2

A
A

 

 2  u(b) + u'(b)  =  0α  where 2α  = 1

2

B
B
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Then in this case, we have  

  1 ( ) ('
m m a    a)  =  0α φ + φ  

  1 ( ) ('
n n a     a)  =  0α φ + φ    (8) 

and  2 ( ) ('
m m b   b)  =  0α φ + φ  

  2 ( ) ('
n n b   b)   =  0α φ + φ  

Now write  

 ( ) ( ( ) (' '
m n n m a  a) a  a)φ φ −φ φ  = 1 ( )n m a  (a)α φ φ  – 1 ( )n m a  (a)α φ φ  + ( ) '

m na  (a)φ φ  – ( ) '
n ma  (a)φ φ  

 = { } { }( ) ( (' '
m 1 n n n 1 m ma  (a) a) (a) (a) a)φ α φ + φ −φ α φ + φ   

 = ( ).0 (m na a).0φ −φ  = 0   (9) 

Similarly, ( ) ( ( (' '
m n n mb  b) b) b)φ φ −φ φ  = 0   (10) 

Using (9) and (10), equation (6) becomes 

  ( ) ( )
b

n m
a

t  t  r(t)φ φ∫  = 0 [Since λm ≠  λ n] 

So, φ m and φ n are orthogonal w.r.t. weight function r(t) on a ≤  t ≤  b. 

4.5.8. Theorem. Prove that the eigen values of the Sturm Liouville boundary value problem are always 
real. 

Proof. Consider the Sturm Liouville problem 

  [ ]d dup(t) q(t) +  r(t) u  = 0
dt dt
  + λ  

   (1) 

where p(t), q(t) and r(t) are real functions and p(t) has continuous first order derivative and  

  1 2

1 2

Au(a) + A u'(a)  =  0
B u(b) + B u'(b)  =  0





     (2) 

where A1, A2, B1 and B2 are constant such that A1 ≠  0 and B1 ≠  0 

Let λ n be an eigen value and corresponding eigen function is φ n(t). Then we must have  

  [ ]n
n n

d dp(t) q(t) +  r(t)    = 0
dt dt

φ  + λ φ  
   (3) 

and  

 1 2

1 2

'
n n

'
n n

A  (a) + A  (a)  =  0

B  (b) + B  (b)  =  0

φ φ


φ φ 
    (4) 
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Taking complex conjugate of equation (3) and (4), we get  

  n
n n

d dp(t) q(t) +  r(t)    = 0
dt dt
 φ  + λ φ   
 

   (5)  

and 

  1 2

1 2

'
n n

'
n n

A  (a) + A  (a)  =  0

B  (b) + B  (b)  =  0

φ φ

φ φ 

    (6) 

This show that nφ  is also an eigen function corresponding to an eigen value nλ . Then by above 

theorem, we have ( ) ( ) ( )
b

n n n n
a

r(t) t  t  dtλ −λ φ φ∫  = 0 

 ⇒  2( ) ( )
b

n n n
a

r(t) t dtλ −λ φ∫  = 0 

Since r(t) > 0 and (n t)φ  ≠  0, being a non – trivial solution, so we must have  

  n nλ −λ  = 0 ⇒  n nλ = λ  

This shows that nλ  is real. 

This completes the proof. 

4.5.9. Exercise. Find the characteristic values and corresponding characteristic functions of each of the 
following Sturm Liouville problems -  

(1) 
2

2
d u u
dt

+ λ  = 0 u(0) = 0, u
2
π 

 
 

 = 0 

(2) 
2

2
d u u
dt

+ λ  = 0 u(0) = 0, u(L) > 0, L > 0 

(3) d dup(t)
dt dt t

λ  +  
u = 0, u(1) = 0, u ( )eπ  = 0 

Answers.  

(1) λ  = 4n2 (n = 1, 2,…) u = cn sin 2nt (n = 1, 2,…) 

(2) λ  = 
2n

L
π 

 
 

 (n = 1, 2,…), u = cn sin n t
L
π  (n = 1, 2,…) 

(3) λ  = n2 (n = 1, 2,…), u = cn sin (nlog t), (n = 1, 2,…) 
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4.6. Check Your Progress. 

1. Find all the real critical points of the non – linear system 

    
8

6 6

2

2

dx x y
dt
dy y x
dt

= − 

= − +


  

and determine the type and stability of each of these critical points. 

2. Find the characteristic values and characteristic functions of the Sturm – Liouville problem 

  d dyx   y
dx dx x

λ  +  
 = 0         

 y' (1) = 0, y' ( )2e π  = 0       

where we assume that the parameter λ  is non-negative. 

4.7. Summary. 

In this chapter, we discussed about methods to check the stability and asymptotical stability of a critical 
point and obtained some interesting results which provide the required using Liapunov functions. Also 
one more important topic of SLBVP is discussed in this chapter which wimm be very useful in further 
studies, when we deal with Heat, Wave and Laplace equations.  
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